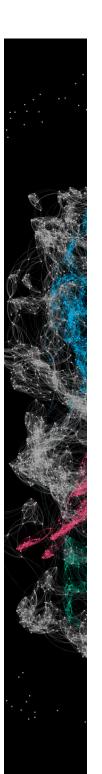


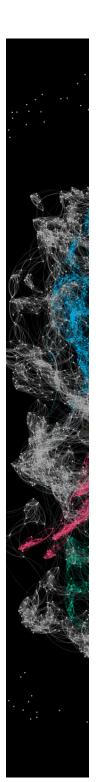
Data-Model Convergence (DMC) Initiative

Multicore World 2019 Wellington, New Zealand February 11-14, 2019


James A. Ang, Initiative Lead

Andrew Lumsdaine, Draguna Vrabie, Robert Rallo, Mark Raugas, and Kevin Barker

Initiative Leadership Team


PNNL-SA-140780

Outline

- Leadership Team
- Definition of DMC
- Approach
- DMC Scope
- PNNL Strengths
- Risks and Mitigations
- Exit Strategy
- PNNL Initiative Goals

DMC Initiative Leadership Team

Role	Name	Organization
Initiative Lead	Jim Ang	PCSD
Chief Scientist	Andrew Lumsdaine	PCSD
Domain Applications Thrust Lead	Draguna Vrabie	EED
Domain-Aware ML Thrust Lead	Robert Rallo	PCSD
Software Stack Thrust Lead	Mark Raugas	NSD
Hardware Architecture Thrust Lead	Kevin Barker	PCSD
Communications	Karyn Hede	CITD
Project Coordination	Becky Wattenburger	PCSD

- Physical and Computational Sciences Directorate
- Energy and Environment Directorate
- National Security Directorate
- Communications and Information Technology Directorate

Definition of DMC

- Many contemporary science and engineering problems facing PNNL and DOE—such as grid optimization or materials discovery—are best solved by integration of:
 - High performance computing
 - Large-scale data analytics
 - Machine learning methods
- We call this integration "Data-Model Convergence (DMC)"
- Supports directly PNNL Lab Objective:

Accelerating Scientific Discovery through Extreme-Scale Data Analytics and Simulation

Current Approach for DA, HPC, ML Computing Paradigms

Domain Application

Data Analytic Methods

Data Analytic Software Stack

Domain Application

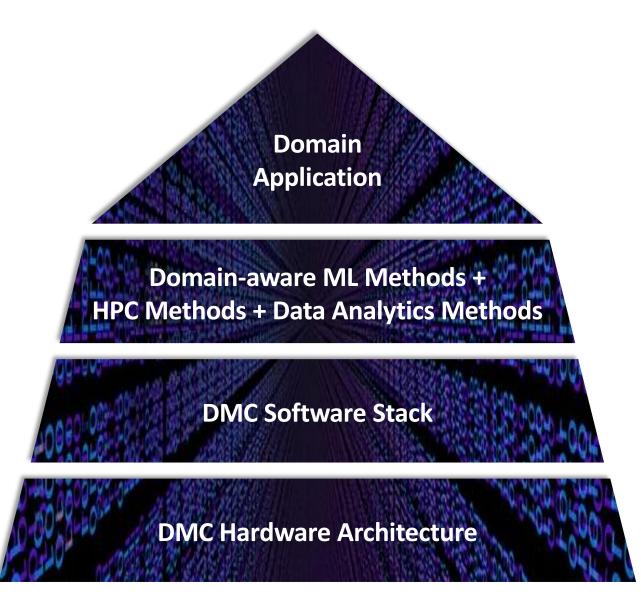
Domain-aware ML Methods

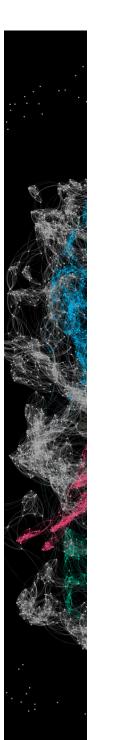
ML Software Stack

Domain Application

HPC Methods

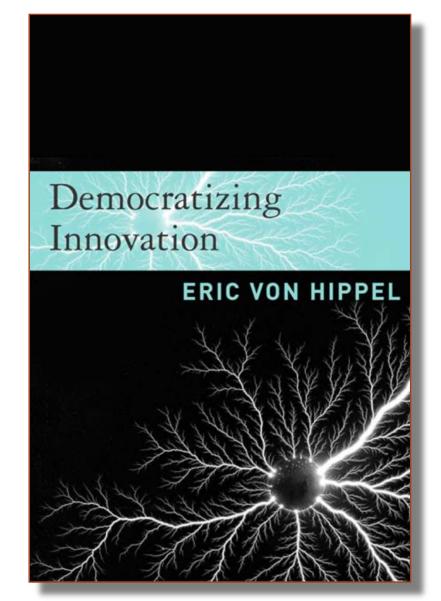
HPC Software Stack

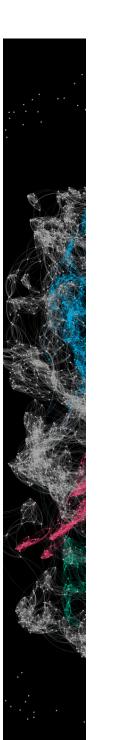

Data Analytic Hardware
Architecture


ML Hardware Architecture

HPC Hardware Architecture

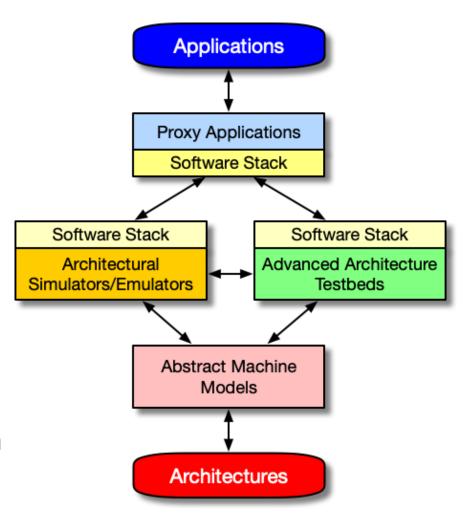
DMC Approach for Converged Computing Paradigms





Approach: The Lead User

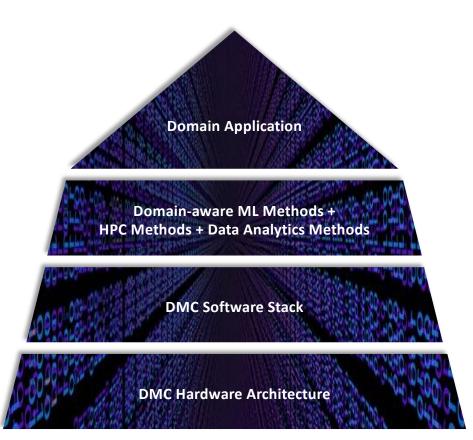
- Lead User is a key concept from *Democratizing Innovation* by Eric Von Hippel
- Lead Users are "a source of novel product concepts"
- With Open Source, innovation does not only come from manufacturers
- "Users are firms or individual consumers that expect to benefit from using a product or service. In contrast, manufacturers expect to benefit from selling a product or service."



Approach: Holistic Co-design

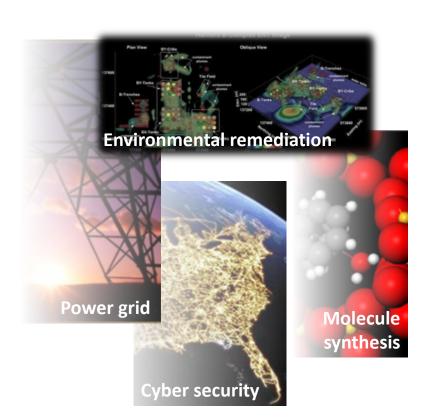
Pacific Northwest

- We can be Lead Users
 - Our goal is to co-design and develop DMC computer architectures and software stack for DMC workloads
- Purpose-designed Hardware Specialization
 - Processor and Memory manufacturers don't have sufficient insight into our applications to know the most effective architectural innovations
 - As Lead Users, the DMC Initiative can establish multi-disciplinary collaborations to develop advanced design concepts



Approach: DMC Initiative Thrusts

- Domain Applications
 - Define DMC challenge problems
 - Deliver DMC capabilities to domain scientists
- Domain-aware Machine Learning
 - Address gap between domain models and scalable approaches to scientific ML
 - Deliver new theory and tools
- Software Stack
 - Address need for single programming framework for developing combined data, HPC, and ML applications
 - Deliver scalable software framework to support nextgeneration applications on heterogeneous hardware

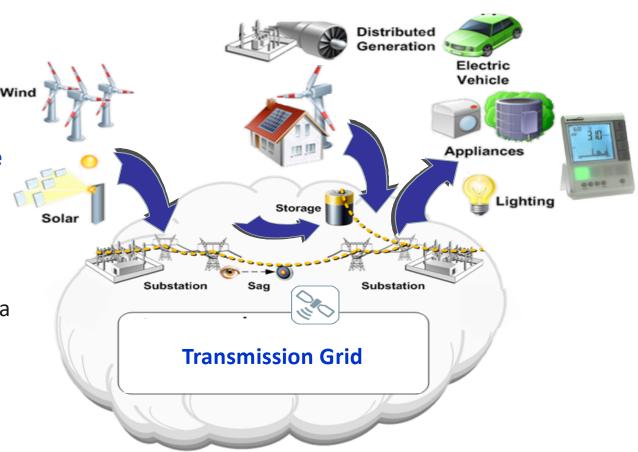

- Hardware Architecture
 - Address need for novel architectures to improve system efficiency and performance in DMC applications
 - Deliver tools, methods, and prototype designs for next-generation architectures

Domain Applications: Research Areas of Interest

Pacific Northwest NATIONAL LABORATORY

- Address decision making and discovery under uncertainty at the convergence of data analytics, high performance computing and machine learning
 - Accelerate solutions to mathematical equations with hybrid dynamics. Integrate purpose designed hardware specialization, advanced numerical solvers, and datainformed algorithms for real-time monitoring, performance forecasting and robust decisions
 - Develop multi-agent decision systems. Integrate datainformed optimization, dynamic system decomposition, hierarchical machine learning and leverage infrastructure graph architecture knowledge, and data-driven control
 - Co-optimize design and control decisions. Integrate combinatorial optimization methods with data-driven modeling for decision steering

Domain Application: Power Grid



- Realizing a Secure, Flexible, and Resilient Electric Power System
 - DMC will enable real-time control of the future grid

Challenges

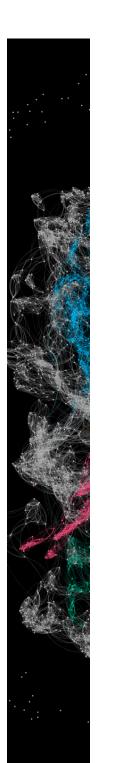
Goal

- Grid dynamics Control and Analysis
 - Data-driven short timescale response (continuous to milliseconds)
 - Operator-driven moderate timescale response (seconds to minutes to 10s of minutes)
 - Model-driven long timescale optimization (months to decades)
- Data volumes
 - Grid edge devices and smart meters amass data surpassing 1 petabyte/year
- Machine Learning
 - Training to Improve Grid Resilience
 - Inference for distributed embedded controls

Domain-aware Machine Learning: Research Areas of Interest

- Embedding of Domain Knowledge
 - Knowledge representations for ML
 - Integration of domain knowledge
 - Data-driven scientific discovery
- Accelerated Learning
 - Methods to accelerate the convergence and stability of ML algorithms when (labeled) data are limited
 - Tools to speed-up the tuning and optimization of domain aware ML models

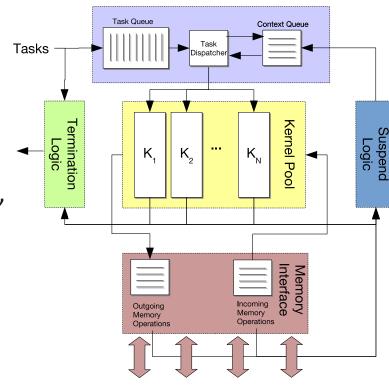
Accelerated Learning

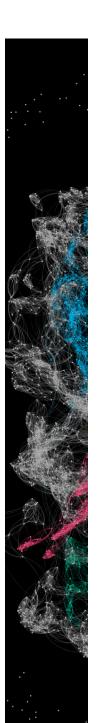

Knowledge Embedding

Domain-Aware Machine Learning

DMC Workloads and Kernels

Software Stack


Hardware Architectures


Software Stack: Research Areas of Interest

- DMC Software Runtimes
 - Asynchronous task-based, dataflow, functional, distributed actor-based methods
 - Support for processing-in-network, moving of compute to data (non von-Neumann)
 - Security and privacy mechanisms to support compliance
- Accelerator-based programming methodologies
 - Synthesis of custom hardware accelerators based on high-level algorithm specifications
 - Distributed coordination of workloads across heterogeneous, possibly non von-Neumann architectures
 - Provide efficient data movement (streaming, batch, parallel) to processing units
- Compiler or runtime synthesis and/or optimization of algorithms
 - Directive-based programming for parallel and streaming algorithms
 - Methods of discovering, exploiting, and maintaining parallelism in scientific codes

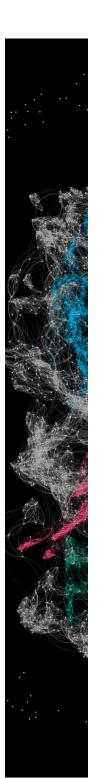
Memory

Hardware Architecture: Research Areas of Interest

- Tools
 - Rapid high-level design and synthesis
 - Enable design-space exploration
- Architectures
 - Targeting performance-critical DMC kernels
 - New computing paradigms (e.g., Non-von Neumann)
- Testbeds
 - Supporting DMC thrust areas
 - Enable measurement and assessment of performance impact

Domain-Aware Machine Learning

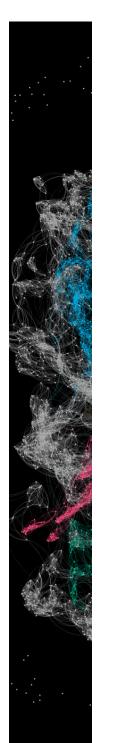
DMC Workloads
And Kernels


System Software

Hardware Architecture

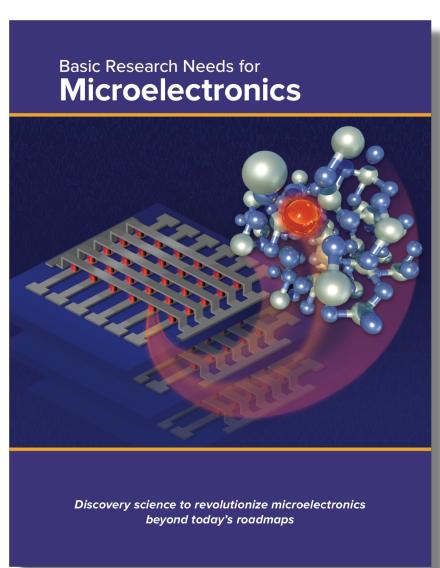
DMC Architecture
Testbeds

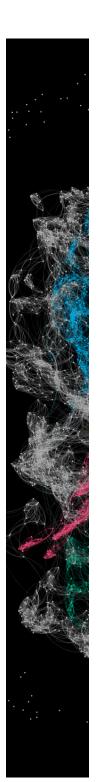
High-Level Design & Synthesis Tools


Novel Computing Paradigms

PNNL Strengths

Thrust Area	Leaders	Artifacts/Projects	Customers
Domain Applications	Carl Imhoff	Grid Modernization Lab Consortium	DOE/OE
	Henry Huang	ExaSGD, MMICCs: MACSER	ECP, ASCR, OE, CESER
	Jeff Dagle, et al	Dynamic Contingency Analysis Tool - DCAT	2018 R&D100 Awardee
Domain-aware Machine Learning	Nathan Baker	SciML BRN	ASCR
	Alex Tartakovsky	MMICCs: PhILMs	ASCR
	Court Corley, Nathan Hodas	Deep Science Agile Investment	PNNL LDRD
	Sutanay Choudhury, et al	StreamWorks	2018 R&D100 Awardee
	Hodas, Choudhury, Ang	ExaLearn	ECP, ASCR
Software Stack	Andrew Lumsdaine	MPI, PBGL, C++	ASCR, DoD, NSF
	Mark Raugas, John Feo	SHAD, CASS-MT	DoD/HPDA, DARPA
Hardware Architecture	Jim Ang	μelectronics BRN, ECP/HT Director	DOE-SC, ECP
	Ang, Kevin Barker, Feo	P38, AGILE	DoD, IARPA
	Barker, Tallent, Marquez	CENATE	ASCR
	Antonino Tumeo	DAEDALuS	DoD/HPDA

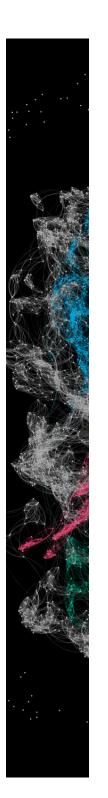

DOE-SC Basic Research Needs for Microelectronics


DOE's Long-term R&D Strategy for Beyond Moore's Law

Priority Research Directions

- Flip the current paradigm: Define innovative material, device, and architecture requirements driven by applications, algorithms, and software
- Revolutionize memory and data storage
- Reimagine information flow unconstrained by interconnects
- Redefine computing by leveraging unexploited physical phenomena
- Reinvent the electricity grid through new materials, devices, and architectures

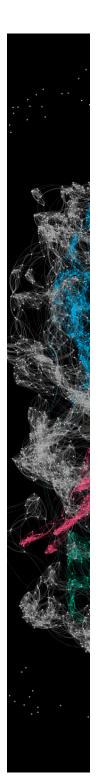
https://science.energy.gov/ascr/community-resources/program-documents/



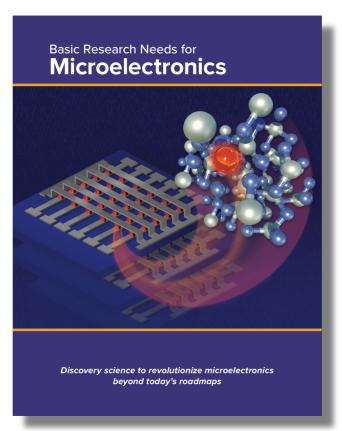
DMC Risks and Mitigations

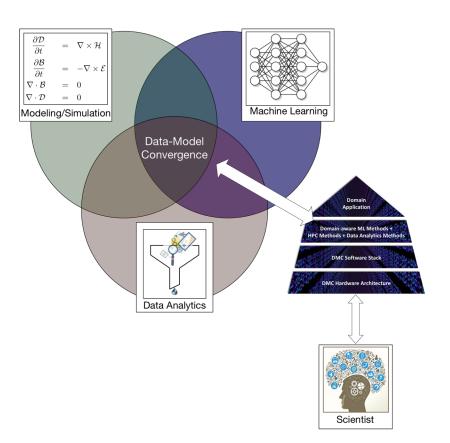
- Technical Risks are expected / accepted to develop new game-changing capabilities
 - Concurrent development of Hardware Architecture and Software Stack creates moving targets
 - Holistic Co-design requires ongoing collaboration, not monthly or quarterly synchronization
 - DMC does not have direct control of open source projects that it may rely on
- The Leadership team has the responsibility to manage technical risk of the Overall DMC Initiative, through the selection and pruning of projects
 - Semi-annual project reviews and evaluation
 - Maintain queue of backup projects and tasks within projects
 - Agile Manifesto R&D approach leads to rapid test and evaluation of prototype capabilities by domain application users to inform project and initiative leaders

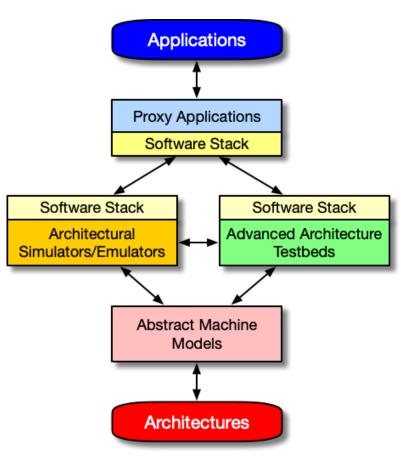
DMC Exit Strategy


- Targets
 - DMC Computing R&D shifts to ASCR, DoD, DARPA, CS R&D programs
 - DMC Domain Application support shifts to OE, CESER, BER, EERE, DoD, DHS programs
- Approach
 - "Off-ramps" integrated into the DMC structure to ensure success and mitigate risks
 - Agile development with regular delivery of high-quality functional products to actively engage customers/collaborators
- Areas of Emphasis
 - Initial application focus: power grid, building on existing electric power system relationships and capabilities
 - PNNL responsibility for deployment of DMC Architecture can cultivate skills as a future
 ASCR system prototype facility with strong vendor collaborations

PNNL Initiative Goals


- Development of enduring and game-changing capabilities
- Attract technical leadership to PNNL
- Pursue new opportunities
 - Program development
 - Academic partnerships
 - Strategic industry collaborations




Thank You

DMC will position PNNL to help define the Beyond Moore's Law computing world

