Hewlett Packard Enterprise

What comes after Exascale?

Paolo Faraboschi, VP and HPE Fellow Hewlett Packard Labs

February 2023

SYSTEMS OF SYSTEMS

~10x Exascale

Productivity and agility for HPC and AI applications

Today

Exascale Supercomputer

Federated workflows

For modeling, simulation, data analytics, and artificial intelligence

Systems-of-systems

Integrate, automate and optimize workflows that combine theory, simulation, experiments and observations from scientific instruments

World's fastest Workflows

World's fastest **Supercomputers**

LABORATORY CAMPUS

supercomputer

Radioactive Ion Beam

High-temperature materials

Metal Processing

Chemical and Materials

Irradiated Fuels

Graphite Reactor

and the second second

Biological Sciences

Environmental Science

THE DATA AND AI CHALLENGE

A MOTIVATING EXAMPLE: EDGE-TO-HPC SCIENCE WORKFLOW

(1) PERFORMANCE PRODUCTIVITY & PROGRAMMING ENVIRONMENT

 \bigcirc

https://github.com/CrayLabs/SmartSim

(2) EDGE-TO-EXASCALE ORCHESTRATION

• Edge-to-Exascale SDK

- Helps to manage the lifecycle of edge AI + HPC workflows
- Coordinates data movement, data transfer nodes, models and job scheduling

Edge-friendly job scheduling

• Intelligent techniques and tools for orchestrating workflows and refactoring experiments

Instrument stack

 Software stack based on open platforms

Data Center Compute

(3) SELF LEARNING, TRUSTWORTHY, AI DATA FOUNDATION

Separate layer

- Common Metadata Framework (API, client, and server)
- Agnostic of storage and ML platforms
- Links data, pipelines, models and outcomes
- Tracks and learns from workflow history

• Open, community-based

- Built on open-source foundation (Git, DVC, MLMD...)
- Designed for scale, and exponential growth in scientific data and artifacts
- Makes data, metadata, models and experiments shareable across teams and communities
- Speed up data-driven scientific discovery

https://github.com/HewlettPackard/cmf

Machine Learning Platform

AI Pipelines

Data Ingestion, Cleanup, Model Engineering, Validation, Serving

Frameworks and MLOps Platforms

Spark, Sklearn, TensorFLow / Pytorch, Mlflow, Kubeflow, etc.

Self-Learning Data Foundation

Northbound Connectors and Intelligence Data Selection, AI Pipeline Quality, etc.

Git for Al Data

Data and Metadata Management, Versioning, Workflow Lineage

Southbound Connectors and Intelligence Data Gradation for Tiering & Movement, Data Shaping, etc.

Data Storage Systems PFS, object stores (HPC, Cloud, Edge)

EXAMPLE: NORTHBOUND INTELLIGENCE

- Extract insights from data in complex workflows
- Utilities and infrastructure for lineage and provenance interception of AI/ML workflows
- Meta-learning capabilities: historical correlations help building robust and explainable models
- Identify data of highest importance for quality
- Spans the training and inference flows, closing the loop between monitoring and model update

Accuracy vs. Number of Iterations

Number of Iterations

(5) HETEROGENEOUS COMPUTING

EXAMPLE: ANALOG IN-MEMORY COMPUTING FOR DECISION TREES

X-TIME: eXplainable Tree In-Memory Engine

Dataset [ID]

GPU (V100) at higher throughput

Up to **9,740x lower latency** compared with

Novel Microarchitecture Analog Computing Element Scalable performance ار ال CHIP External I/O OUTPUT Latency | -01 CAN CP INPUT С C C С 10^{-8} 5 4 Dataset [ID] ughput [Sa/s] 0 01 0 01 0 01 С С DÁC DAC С С С С Shift Shift Buffer G. Pedretti et al. С С Nature Comm. 12, 5806 (2021) 5

68M ACAM elements (4k cores of 256x65) connected with an H-tree NoC

On-the-fly parallel reduction avoids overheads for large scale models

20W power budget

Depth and width independent throughput scaling, **massively parallel** node traversal in ACAM

Enables **large scale model inference** without performance loss

Up to **8x higher throughput** compared to digital ASIC at lower latency

GPU

Digital ASIC

X-TIME

(5) DATA-ACCELERATED STORAGE

(6) NETWORK INFRASTRUCTURE

- Extending HPC networks to the edge: compute, storage, devices
- Accelerators driving injection (100 Gbps → 200 Gbps)
- Photonics remains challenging (copper @ 200 Gbps within rack works!)
- Blending of supercomputer + cloud: HPC-aaS, single job with 1,000 instances, QoS, privacy and security
- Growing interest in HPC functionality at Ethernet link / transport (RDMA, offloading, isolation, progression, collectives, flow-based congestion, ...)

Converged Ethernet for interoperability

erformance at scale

Congestion control + multi-tenancy

(7) PERVASIVE SECURITY

Platform trust + Real time detection

- Advanced Persistent Threats (APT)
 - Breech-to-discovery time: ~100 days [FireEye 2018]
- Supply Chain: top security concern of most governments
 - How to secure what is manufactured, delivered, where
- Extend silicon root of trust in real time
 - Detect zero-day threats without signatures
 - Continuous kernel integrity check (in seconds)
 - Verification of pluggable hw components and firmware
- IDevID and Platform Certificates (launched June '21)
 - Factory-issued X.509 server and TCG certificates
 - Manifest of pluggable hardware components
- Deep Supply Chain Attestation
 - Manifest of <u>all</u> parts, signed, maintained via blockchain

https://www.hpe.com/us/en/security/project-aurora.html

WRAPPING UP

- AI and data are disrupting science "AI will **not** replace scientists, but scientists that use AI will replace those who don't"
- Complex science workflows will span from the experimental edge to extreme-scale computing
- Today's Exascale generation may be the last of "monolithic" supercomputers
- The next breakthrough will require a "Systems-of-Systems" view

SYSTEMS OF SYSTEMS