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Abstract

Al, as seen today by large-scale deep learning, presents complex challenges to
computer systems. It requires the adaptive execution of heterogeneous components,
each of which is a cluster of parallel tasks.

Further, large amounts of data need to be read, written, and often moved in small
dynamic batches. Deep learning must be efficiently linked to pre and post-processing
(data engineering). This implies converged environments with Java, Python, and
C++ ecosystems.

Further, Al must be integrated with better-understood large parallel simulations. The
simulations can invoke Al to control passage through phase space (often with
ensembles). Alternatively, it can train surrogates used to replace all or part of the
simulation. In the latter case, there are consequent inferences, as in computational
fluid dynamics or climate simulations where Al can learn microstructure.

This implies we must support systems that run well in conjunction with classic Slurm-
MPIl-based simulations as well as in modern cloud environments, including
challenges from shared resources due to multi-tenancy. This extends the needed
convergence to link HPC and cloud environments.




T AN e N et B R 1 la X

for Science
Foundation Models

F TR R A 0, =
Cyaaed N
i N a

Deep Learning and Data Engineering : F‘;MQ N
i s

afﬁ-v

A beautiful painting of ten small black robots swimming in the sea with a supercomputer on an island by Constable

A beautiful painting of sixteen small robots outside a gorgeous palace in stormy cloudy sky in style of Leonardo da Vinci. There is a Sun and a Moon in the sky
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This unique collection introduces Al, Machine Learning (ML), and deep neural network technologies leading to scientific discovery from the datasets generated 95% of Al Discussed is
both by supercomputer simulation and by modern experimental facilities. Deep Learnlng

Huge quantities of experimental data come from many sources — telescopes, satellites, gene sequencers, accelerators, and electron microscopes, including
international facilities such as the Large Hadron Collider (LHC) at CERN in Geneva and the ITER Tokamak in France. These sources generate many petabytes
moving to exabytes of data per year. Extracting scientific insights from these data is a major challenge for scientists, for whom the latest Al developments will be
essential.

The timely handbook benefits professionals, researchers, academics, and students in all fields of science and engineering as well as Al, ML, and neural networks.
Further, the vision evident in this book inspires all those who influence or are influenced by scientific progress.
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Research Plan: Al for Science Patterns

Currently, deep learning plays a dominant role in science, from data analytics and simulation
surrogates to policy decisions.

We can group the system structure into a “handful” (two hands <10) of patterns such as

an Overall Reasoner based on reinforcement learning and large language models to learn the
world’s knowledge and control experiments;

Image-based systems for astronomy, pathology, microscopy, and light scattering;

Graph-based systems such as in social media and traffic studies; represent molecular and other
structure;

Dense systems to map structure to properties as in drug discovery;

Time series and sequence (Recurrent, Transformer) models as in language, earth, and
environmental science;

GAN/Diffusion models to generate scenarios as in datasets to test experimental system.
Surrogate models have distinctive issues where there is no current consensus

All Network types can be mixed together as in text to image systems DALL-E and Imagen.

We suggest taking good examples of each pattern and supporting them with high-performance,
easy-to-use environments in end-to-end systems, including data engineering.

This would cover parallelism, storage and data movement, security, and the user interface. Then we
explore multiple examples of each pattern, possibly leading to “Foundation” models for each of them.




Big and Foundation Models
Transfer Learning builds Al model in one area and then uses it with modest

additional training in another area
Foundation Models follow this to an extreme and train on so much data that model

can generalize to cover “everything”
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Overall Al for Science Architecture

Science Reasoner Science Patterns Applications

Reasoner based on
results of applications
including all papers Sequences

Time Series w
~omics
~ Drug Discovery

Drug Discovery

Material Science
Electrical Grid

il

Surrogate

Agriculture
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Typical Deep Learning System Environment

Data Engineering: Data => Information preprocessing -- Hadoop, Spark, Scikit-Learn
Data Science: Information => Knowledge Compute and |I/O intensive step (PyTorch and
Tensorflow)

Jupyter Notebook Based Eco System

|“ Modelling Eco-System Analytical Data Engineering End User Eco-System

Data Engineering Eco-System Eco-System

Data

Post-Processing

VO
v [

CPU, GPU, TPU

GCP
Instruments

Model

Apache Arrow Table
Apache Parquet File




CYLON

PROGRAMMING

ENVIRONMENTS
C++ Java SQL
Python  RStudio
DATA ML / DEEP
PROCESSING Jupyter R LEARNING

Tensorflow

| Spark |

‘Twister2| | Dask |

' MXNet | | Horovod |

| Flink ] [Hndoup]

Pandas ' PyTorch |

HDF5 Arrow

' Scikit-Learn |

Numpy Parquet
DATA
FORMATS

Originally C++ Kernel for Java Systems like Spark, Flink, Twister2
Now standalone from Python
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C++ Java Python R

Notebooks and
Workflows

Data
Engineering

Cylon API &
Operators

Resource Management
K8s Slurm Dask Yarn OpenMPI




Data Engineering (DE) and Deep Learning (DL)

Java systems have difficulties in linking to Python/C++ with high performance

From Data Management(DM) to Data Engineering (DE) to Deep Learning (DL)

4 Y2 a4 Yo N

Normalization \

e Databases L e MLP e Classification

e APIs e Filtering e AutoEncoders e Generation

e Adaptors e Transformation e CNN e Prediction

e Data Streams e Aggregation e RNN e Pattern

e |OT e Feature e LSTM Recognition

() EXtraCtlon [ ] ]

o
" AN AN AN /
Spark, Flink, Twister2, Hadoop, Cylon ... PyTorch, TensorFlow, MXNet, ...
Big Data Frameworks Deep Learning Frameworks

There is Data Engineering in Java and Python/R ecosystems
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Must support Parallelism as Automatically as Possible

At alow level, parallelism will be
« NCCL MPI Horovod etc.
« or pleasing parallelism (many task)

« But the user can be shielded from hard truly parallel cases by libraries

« Originally these libraries were Linear Algebra for simulations and implemented in
programming models such as High Performance Fortran HPF, C++, Java

« Data Analytics has developed a very powerful set of such operator/function
libraries with
« Pandas and Numpy array, table and dataframe operations
« Deep Learning in PyTorch and Tensorflow
« Spark transformations

* Modin has described architecture of Pandas Operators

« Further this is proxied with Python frontends and can invoke parallel (C++)
Implementations unbeknownst to user

« So goal is to develop infrastructure for operator-based parallelism

« Uses approach similar to “High Performance Fortran” developed by Ken
Kennedy at Rice University 1990-2000




Some Possibly Parallel Operators/Functions
Classic Parallel Computing: (720 MPI functions)

AllReduce, Broadcast, Gather, Scatter

Linear Algebra (320 functions in SCALAPACK at one precision)

Matrix and Vector Operations

Tables 224 Pandas operators for Dataframe out of 4782 total

Intersect: Applicable on two tables having similar schemas to keep only the records that are
present in both tables.

Join: Combines two tables based on the values of columns.Includes variations Left, Right,
Full, Outer, and Inner joins.

OrderBy: Sorts the records of the table based on a specified column.

Aggregate: Performs a calculation on a set of values (records) and outputs a single value
(Record). Aggregations include summation and multiplication.

GroupBy: Groups the data using the given columns; GroupBy is usually followed by
aggregate operations. Famous from MapReduce

Arrays (1085 Numpy)
Tensors (>700 Tensorflow, PyTorch, Keras)

All the myriad of Numpy array operations

Add a layer to a deep learning network

Forward (calculate loss) and backward (calculate derivative) propagation
Checkpoint weights of network




Cylon: A High Performance Distributed Data Table

e Cylon is a high performance C++ kernel and a distributed runtime for big data

processing supporting operator parallelism
o Built around Apache Parquet and Apache Arrow based storage and in-memory data structures
which offer high performance and zero-copy where possible
m Supports integration with Deep Learning workloads, Pandas and Numpy
m Zero-Copy data transfer between heterogeneous systems and languages.

e Table API, an abstraction for ETL (extract, transform, load) for scientific computing and
deep learning workloads including Pandas, HDF5
o Join, Union, Intersect, Difference, Product, Project ... ~40 operators

e Written in C++, APIs available in Java and Python (via Cython).

e Due to Arrow, Cylon faster sequentially than Pandas in many cases

e Also links to Parsl, Radical Pilot, Dask and Ray efficiently so can support
asynchronous mixtures (islands) of MP| (Bulk Synchronous Processing) tasks
o Does not require classic MPI engine so runs inside or outside Slurm

e Future: using MLIR, support graph of asynchronously linked parallel operators




Distributed Dataframe Operator Patterns

e All Pandas Operators supported by 8 patterns of parallel algorithms so can
extend to all 224

Pattern Operators Result Semantic Communication
Embarrassingly parallel Select, Project, Map, Row-Aggregation™ Partitioned -
Shuffle Compute Union, Difference, Join, Transpose Partitioned Shuffle
Sample Shuffle Compute Sort Partitioned Gather, Bceast, Shuffle, AllReduce
Combine Shuffle Reduce Unique, GroupBy Partitioned Shuffle
Loosely s —
Synchrondus Broadcast Compute Broadcast-]om. Paanloned Bcast
Globally Reduce Column-Aggregation* Replicated AllReduce
Halo Exchange Window Partitioned Send-recv
I/O (Partitioned read/write) Read/Write* Partitioned Send-recv, Scatter

*Not categorized in Modin, **Specialized join algorithm

15
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Communication Library Performance - Strong Scaling

evlon sealar agg MP1, Gloo, UCX

Join (Sort) - MPI, Gloo, UCX Groupby (hash) - MPI, Gloo, UCX Sort - MPI, Gloo, UCX
—8— Cylon_mpi —8— Cylon_mpi ® —8— Cylon_mpi _‘ —&— Cylon_mpi
Cylon_gloo Cylon_gloo Cylon_gloo 0" Cylon_gloo
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Parallel Operator Performance - Strong Scaling

Strong Scaling - Join
10"
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Dashed blue lines are speedup for Cylon implementations

Strong Sealing - GroupBy
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CylonFlow on Dask & Ray

DDF Join

105 4
Cylon

CylonFlow-Ray
CylonFlow-Dask
Dask

Spark

pandas

biddd

10" 1

1 2 4 8 16 32 G4 128 256 nl2
parallelism

shuffle compute

DDF Join 1000

Cylon
CylonFlow-Ray
CylonFlow-Dask
Dask

Spark

pandas

biddd

time (ms)
=
A

16 32 G4 128 256 nl2
parallelism
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DDF Groupby
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parallelism

combine shuffle compute
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Summit Results - Strong Scaling

3 x 10!

Time (ms)

10 A

168 336 672 1344 2688 5376 10752 1344 92 % 107 26&x 10°  4x10°  smwx 100 107
Parallelism Parallelism

e Communication cost decreases as problem size increases or computer size decreases

e For 50 billion data points — inflection point occur at parallelism > 10k
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Cylon and Radical Pilot on Summit

Weak Scaling upto 320 way parallelism

Cylon (join op.) Total Execution Time (40 Ranks per task) using RADICAL-Pilot

435 34

Time (s)

400 1

300 1

3

435 73

,&Q"

B TASK_TTX
4121

II4
e

N
Nodes | Tasks

L 0 RP_TASK_OWVH
N
N
B

Assume can use HPC workflow or Ray distributed OS with parallel operators for Pandas
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State of the Art Al Models are increasing in Model and Data size

Training compute (FLOPs) of milestone Machine Learning systems over time
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Large Language Models

1,000 Billion
Nvidia
Microsoft ® Google PaLM
MT-NLG
9.90E+24
DeepMind FLOPS
Gopher
GPT-3 Bl R
Jurassic QoE _ 3.85E+24 FLOPS
7, Google C1I‘|CﬂyStS
e LaMDA Tsinghua University
'_ -
Zhipu.Al GLM
S 100 Billion » Yandex P
I YalLM DeepMind
< Chinchilla
= 5.76E+23 FLOPS
MosaicML
GPT-30B
MosaicML
GPT-13B
1.23E+22 FLOPS
10 Billion ,/
100 Billion 1,000 Billion 10,000 Billion

TOKENS

UV/



Optimal LLM Training Cost

(# Parameters)

Size

Tokens

Optimal Training

Compute Cost

MosaicML GPT-30B 30 Billion 610 Billion A100 S 325,855
Google LaMDA 137 Billion 168 Billion A100 S 368,846
Yandex YaLM 100 Billion 300 Billion A100 S 480,769
Tsinghua University Zhipu.Al GLM | 130 Billion 400 Billion | A100 S 833,333
Open Al GPT-3 175 Billion 300 Billion  A100 $ 841,346
Al21 Jurassic 178 Billion 300 Billion A100 S 855,769
Bloom 176 Billion 366 Billion | A100 S 1,033,756
DeepMind Gopher /280 Billion 300 Billion A100 S 1,346,154
DeepMind Chinchilla " 70Billion 1,400 Billion  A100 $ 1,745,014
MosaicML GPT-70B 70 Billion 1,400 Billion 'A100 S 1,745,014
Nvidia Microsoft MT-NLG 530 Billion 270 Billion | A100 S 2,293,269
Google PaLM 540 Billion 780 Billion A100 S 6,750,000

Multiply by number of
hyperparameters (100)

Commercial Applications
Training cost << Inference

Science is opposite in many
applications although
turbulence inference cost
could be > surrogate training
as inference for each space-
time point

Using ChatGPT like search in Inference ($107B/year is current Google Search Cost)

Query per day
Average Cost Per Query
Daily Incremental Cost

I Annual Incremental Cost  $ 1,683,973,626 S

B
S

27,648,000,000  27,648,000,000
0.0001669 $  0.0000592 $
4,613,626 5 1,636,567 $

Real Time Query Processing Additional Costs x 3 for other extra costs

27,648,000,000
0.0000994 S
2,748,044 S

597,346,885 S 1,003,035,927 S

27,648,000,000
0.0000373
1,030,516
376,138,473 | =




Mixture of Experts in GLaM Generalist Language Model

Google’s “GLaM: Efficient Scaling of Language Models with Mixture-of-Experts.” has 1.2
trillion parameters, which is approximately 7x larger than GPT-3.

It consumed only 1/3 of the energy used to train GPT-3 and required half of the FLOPS
for inference while achieving better accuracy.

GLaM only activates 97B parameters (8% of 1.2T) per token during inference. (64
exnerts)

GPT-3 GLaM relative
FLOPs / token (G) 350 180 —-48.6%

Cost Train energy (MWh) 1287 456 -64.6%
A — Zero-shot 56.9 62.7 +10.2%
4 One-shot 616 655 +63%
on average

Few-shot 65.2 68.1 +4.49%




Performance on MLPerf Training

. Efficiency = Speedup/# Accelerators
. TPUv4 and H100 referred to 4 GPU A100 as unit performance
» Parallel Performance above 1024 GPUs not very good so deep learning systems not

huge and occupy small fraction of a supercomputer.
o Frontier has 37,888 AMD Radeon Instinct MI250X GPUs

ResNet on 4 PCIE 4 SXM 8 64 1024 3456 4096
ImageNet

A100 0.92 1 0.95 0.76 0.39 0.16 (4216)
TPUv4 0.28 0.28

H100 1.86 1.52 (32)

BERT on 4 PCIE 4 SXM 8 64 1024 3456 4096
Wikipedia

A100 0.72 1 0.99 0.84 0.31 0.16
TPUv4 0.17 0.18

H100 2.62 2.32 (32)




Models of Parallelism
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Is Parallel Data Engineering of any Importance?

90% of (future) Al for Science is Deep Learning

In a DL job perhaps 10% of user code but 95% of execution time is in
Tensorflow or PyTorch; rest is data engineering

So we need to both use parallel TensorFlow and PyTorch (understood) and

iIntegrate all the parallel components as likely to have many Al jobs
o Often 512 GPUs maximum useful size so Al supercomputer will simultaneously run
lots of jobs

Note Deep Learning unusually sensitive to I/O
o Read and Write Models
o Read and Shuffle Data

Must re-use existing technologies: PyTorch JAX Pandas Workflow (Ray, HPC)
Use best Industry and Research technologies

MLIR very attractive as used commercially to both optimize basic code (e.qg.
linear algebra OpenXLA) and describe systems

Make Pathways open source .......




Data Science/Data Engineering Execution Model

» Deep Learning needs an efficient mixture of asynchronously scheduled tasks linked
by dataflow where each task is classic gang scheduled Bulk Synchronous Processed

» Hyperparameter search is asynchronous as are parts of a deep learning model

» Picture is from Google Pathways that implements this model for deep learning

» Naturally extended to a mix of deep learning (machine learning) and data engineering

Sharded Dataflow Program
(Plague)

@Tr&nsf&r subgraph

D Host (many per island)
B Resource Manager (global)

Scheduler (per island)

[0 Executor (per device)

m Collective operations

Datacenter Network (RDMA)

&

Ly

Accelerator
Slices with
private
interconnects

) |

i —

B
i

=

Moc\i\el Cc/:r?nponents

Gang scheduling

|Client

run program D)

-::._'{E

[ I

Time
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Expert Parallelism in a Switch Transformer

Switching FFN Layer

Add + Narmalize

)

UVA Biocomplexity/CS

P

Ricuter

.T.

t
m.;?u‘-féi

Self-Arteritian

T.
1.
Positional
ambadding
(] M:I&

More

Parameter_s

Tgumten

31



Unbundling Deep Learning with Operators

Typically switch to black-box PyTorch or Tensorflow for deep learning with limited
opportunities for custom optimizations for compute and I/O
Google Pathways paper describes an “unbundled operator” approach to deep

learning that could use “conventional HPC tools” to implement complete system
o Shuffling

Batching

Disk--CPU--GPU memory management

Vector (Numpy) to Tensor adding metadata to enable differentiation

Forward Loss calculation pass

Back propagation pass (JAX)

Save Model

Conventional operations in Pandas/Numpy/Cylon

Workflow scheduling

o Other DNN capabilities such as nonlinear neurons and second order optimization

Could add Compiler-based automation for operator parallelism
Need open-source framework to enable uniform treatment of deep learning and data
engineering

Some deep learning operators

@) @) @) @) @) @) O @)




Systems Approach

Pathways implemented with Google PLAQUE workflow environment but suggests
would run on Ray distributed OS

Should be able to use HPC workflows such as Radical Pilot, Pegasus, Parsl

Add full Data Engineering to Deep Learning with complete set of data engineering
and deep learning operators

Support many simultaneous DE+DL jobs

Specify program in MLIR using feature that MLIR specifies a general dataflow
graph of tasks

Specify hardware system -- CPU GPU Disks and Networks -- perhaps also in MLIR

o Need a distributed system Ontology for this and for FAIR metadata of benchmarks
and any data involving computer systems
Map program to hardware (“runtime compiler”)
o Pathways static but applications need dynamic scheduling
o Choose operator parallelism to schedule on available “MPI Islands”
o Scheduling using Reinforcement Learning probably best
Support Arrow and Parquet for parallel I1/O




CSV vs. Parquet vs. Arrow file

Tianle Zhong
Parquet high performance and compact disk storage

Size on Disk Time to Read

N . Performance comparison: Time required to read column & calculate avaerage
File size on disk

Arrow mapped (zerocopy) I 470

Arrow NoNaN 19.74

Arrow mapped (no zero-copy) I 680

o - N

Arrow file AP| 19.79

parquet 684

csv 22.12
csv 16100

10 15 20 25
SIZE UNIT (GB)

o
[F]
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DALL-E: “An ugly painting of the sun shining on a stormy sea with ten small black robots Stable Diffusion - Concl usion
swimming in the sea in style of an amateur” ‘ :




Conclusions

e Al promises pervasive transformative approach to enhance Science Discovery
o Deep Learning transforming simulations (surrogates), data analytics( data from
simulations or observation), apparatus (Al will design, monitor, control experiments),
reasoning
e Need to develop meta-models (Foundation models) valid across many domains
o At least understand how to move across domains and common issues
o Broad use of deep and reinforcement learning
e HPC is essential for Al
e Data Engineering can be parallelized via a library of parallel operators from database to
Pandas style data transformations
e Deep Learning has growing need for more flexible parallelization
e Efficient integration of Deep Learning and Data Engineering is likely to work well but
challenging due to multiple languages and muiltiple distributed environments
o Use of MLIR to describe systems of tasks and hardware promising




DALL-E

“A cute fox lives in a house made out of
sushi”

Questions?

UVA Biocomplexity/CS
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