
Dawn of the Exascale Computing Era

Douglas B. Kothe
Director, US Department of Energy Exascale Computing Project
Associate Laboratory Director, Computing and Computational Sciences
Oak Ridge National Laboratory

MultiCore WorldX
February 14, 2023
Wellington, NZ



2

Exascale Applications: potential outcomes and impact
Will be far-reaching for decades to come

• Predictive microstructural evolution of novel chemicals and materials for energy applications.

• Robust and selective design of catalysts an order of magnitude more efficient at temperatures hundreds of degrees lower.

• Accelerate the widespread adoption of additive manufacturing by enabling the routine fabrication of qualifiable metal alloy 
parts.

• Design next-generation quantum materials from first principles with predictive accuracy.

• Predict properties of light nuclei with less than 1% uncertainty from first principles.

• Harden wind plant design and layout against energy loss susceptibility, allowing higher penetration of wind energy.

• Demonstrate commercial-scale transformational energy technologies that curb fossil fuel plant CO2 emission by 2030.

• Accelerate the design and commercialization of small and micronuclear reactors.

• Provide the foundational underpinnings for a ‘whole device’ modelling capability for magnetically confined fusion 
plasmas useful in the design and operation of ITER and future fusion reactors.
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Exascale Applications: potential outcomes and impact
Will be far-reaching for decades to come

• Address fundamental science questions such as the origin of elements in the universe, the behavior of matter at 
extreme densities, the source of gravity waves; and demystify key unknowns in the dynamics of the universe (dark matter, 
dark energy and inflation).

• Reduce the current major uncertainties in earthquake hazard and risk assessments to ensure the safest and most cost-
effective seismic designs.

• Reliably guide safe long-term consequential decisions about carbon storage and sequestration.

• Forecast, with confidence, water resource availability, food supply changes and severe weather probabilities in our 
complex earth system environment.

• Optimize power grid planning and secure operation with very high reliability within narrow operating voltage and frequency 
ranges.

• Develop treatment strategies and pre-clinical cancer drug response models and mechanisms for RAS/RAF-driven 
cancers.

• Discover, through metagenomics analysis, knowledge useful for environment remediation and the manufacture of novel 
chemicals and medicines.

• Dramatically cut the cost and size of advanced particle accelerators for various applications impacting our lives, from 
sterilizing food of toxic waste, implanting ions in semiconductors, developing new drugs or treating cancer.
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DOE HPC Roadmap to Exascale Systems
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Frontier overview

System
• 2 EF peak DP Flops
• 74 compute racks
• 29 MW power consumption
• 9408 nodes
• 9.2 PB memory (4.6 PB HBM, 4.6 

PB DDR4)
• Cray Slingshot network with 

dragonfly topology
• 37 PB node local storage
• 716 PB center-wide storage
• 4000 ft2 footprint

Olympus rack
• 128 AMD nodes
• 8000 lbs
• Supports 400 kW

All water cooled, even DIMMS and NICs

AMD node
• 1 AMD “Trento” CPU
• 4 AMD MI250X GPUs
• 512 GiB DDR4 memory on 

CPU
• 512 GiB HBM2e total per 

node (128 GiB HBM per 
GPU)

• Coherent memory across 
the node

• 4 TB NVM
• GPUs & CPU fully connected 

with AMD Infinity Fabric
• 4 Cassini NICs, 100 GB/s 

network BW
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Frontier Node

All GPUs and CPU are fully connected on node
and have coherent shared memory

Each GPU is connected to a Slingshot NIC 
• Eliminates GPU-CPU link bottleneck seen in 

Titan and Summit
• 1 GPU or CPU can use all NICS together

Custom AMD EPYC CPU (64 core)
• Supports Infinity Fabric 
• Adds PCIe links for on node NVM (4 TB)
• 512 GB of DDR4 memory (1/2 TB per node)

Four AMD MI250X GPUs
• Announced by AMD November 8 2021
• 128 GB of HBM2e each (1/2 TB per node) 
• 3.2 TB/s memory bandwidth

NVM

Slingshot NICS
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The Exascale Computing Project (ECP) enables US revolutions in 
technology development; scientific discovery; healthcare; energy, 
economic, and national security

Develop exascale-ready applications and 
solutions that address currently intractable 
problems of strategic importance and 
national interest.

Create and deploy an expanded and 
vertically integrated software stack on DOE 
HPC exascale and pre-exascale systems, 
defining the enduring US exascale
ecosystem.

Deliver US HPC vendor technology 
advances and deploy ECP products to DOE 
HPC pre-exascale and exascale systems.

ECP Vision
Deliver exascale simulation and data 
science innovations and solutions to 
national problems that enhance US 
economic competitiveness, change our 
quality of life, and strengthen our national 
security.

ECP Mission

• Funded by DOE Office of Science, Advanced Scientific 
Computing Research (ASCR) and DOE National
Nuclear Security Administration (NNSA)

• 7-year project – $1.8B
• 6 lead labs: ORNL, ANL, LBNL, LLNL, SNL, LANL
• More than 80 research teams
- >1000 researchers
- Drawn heavily from 17 DOE labs plus national 

universities and US companies (100+ each)



11

Each HPC system has served a vital role for ECP Teams
From benchmarking to development to now demonstration of key performance parameters (KPPs)

System Titan (2012) Cray Summit (2017)  IBM Frontier (2021)  HPE
Peak 27 PF 200 PF > 1.5 EF

# nodes 18,688 4,608 9,408

Node 1 AMD Opteron CPU
1 NVIDIA Kepler GPU

2 IBM POWER9™ CPUs
6 NVIDIA Volta GPUs

1 AMD EPYC CPU
4 AMD Radeon Instinct GPUs

Memory
2.4 PB DDR4 + 0.4 HBM + 
7.4 PB  On-node storage

4.6 PB DDR4 + 4.6 PB HBM2e + 
37 PB  On-node storage, 66 TB/s Read 62 
TB/s Write

On-node 
interconnect

PCI Gen2
No coherence 
across the node

NVIDIA NVLINK
Coherent memory 
across the node

AMD Infinity Fabric
Coherent memory 
across the node

System 
Interconnect

Cray Gemini network
6.4 GB/s

Mellanox Dual-port EDR IB  25 GB/s Four-port Slingshot network
100 GB/s

Topology 3D Torus Non-blocking Fat Tree Dragonfly

Storage 32 PB, 1 TB/s, 
Lustre Filesystem

250 PB, 2.5 TB/s, IBM Spectrum Scale™
with GPFS™

695 PB HDD+11 PB Flash Performance Tier, 
9.4 TB/s and 10 PB Metadata Flash

Power 9 MW 13 MW 29 MW

Benchmark system for many 
ECP AD and ST teams

Multi-GPU system for scaling, 
algorithm & model dev, S/W design

Target system for KPP threshold 
demonstrations
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Performance on current and next-gen HPC architectures requires 
effective use of GPUs

Peak performance FLOPS by device
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ECP Application Portfolio: 24 First-Movers of Strategic Importance to DOE

Health care

Accelerate 
and translate 

cancer research 
(partnership with NIH)

Energy security

Turbine wind plant 
efficiency

Design and 
commercialization 

of SMRs

Nuclear fission 
and fusion reactor 
materials design

Subsurface use 
for carbon capture, 
petroleum extraction, 

waste disposal

High-efficiency, 
low-emission 

combustion engine 
and gas turbine 

design

Scale up of clean 
fossil fuel
combustion

Biofuel catalyst 
design

National security

Next-generation, 
stockpile 

stewardship codes 

Reentry-vehicle-
environment 
simulation

Multi-physics science 
simulations of high-

energy density 
physics conditions

Economic security

Additive 
manufacturing 

of qualifiable
metal parts

Reliable and 
efficient planning 
of the power grid

Seismic hazard 
risk assessment

Earth system

Accurate regional 
impact assessments 

in Earth system 
models

Stress-resistant crop 
analysis and catalytic 

conversion 
of biomass-derived 

alcohols

Metagenomics 
for analysis of 

biogeochemical 
cycles, climate 

change, 
environmental 
remediation

Scientific discovery

Cosmological probe 
of the standard model 

of particle physics

Validate fundamental 
laws of nature

Plasma wakefield
accelerator design

Light source-enabled 
analysis of protein 

and molecular 
structure and design

Find, predict, 
and control materials 

and properties

Predict and control 
magnetically 

confined fusion 
plasmas

Demystify origin of 
chemical elements

Starting Point
• 24 applications and 6 co-design projects

• Including 78 separate codes
• Representing over 10 million lines of code
• Many supporting large user communities
• Covering broad range of mission critical S&E domains  
• Mostly all MPI or MPI+OpenMP on CPUs

• Each envisioned innovative S&E enabled by 100X increase in computing power

• Path to harnessing 100-fold improvement initially unknown likely to have disruptive impact on 
software unlike anything in last 30 years

Current status
• All applications have, with their own unique development plans, made tremendous progress in 

model and algorithm development and software architecture redesign / refactor. Most 
applications have integrated and adopted software abstraction layers or co-designed motif-
based components and frameworks to ensure efficient and portable GPU implementations. 

• Many application have already realized >50X increase in science work rate performance on the 
Summit system at ORNL since starting ECP development activities in 2016

à Massive software investments 
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ECP Applications
Targeting specific challenge problems that emanate from key DOE program stakeholder strategies

Domain* Base Challenge Problem Risks and Challenges
Wind Energy 2x2 5 MW turbine array in 3x3x1 km3 domain Linear solvers; structured / unstructured overset meshes

Nuclear Energy Small Modular Reactor with complete in-
vessel coolant loop Coupled CFD + Monte Carlo neutronics; MC on GPUs

Fossil Energy Burn fossil fuels cleanly with CLRs AMR + EB + DEM + multiphase incompressible CFD

Combustion Reactivity controlled compression ignition AMR + EB + CFD + LES/DNS + reactive chemistry

Accelerator Design TeV-class 102-3 times cheaper & smaller AMR on Maxwell’s equations + FFT linear solvers + PIC

Magnetic Fusion Coupled gyrokinetics for ITER in H-mode Coupled continuum delta-F + stochastic full-F gyrokinetics

Nuclear Physics: QCD Use correct light quark masses for first 
principles  light nuclei properties

Critical slowing down; strong scaling performance of MG-
preconditioned Krylov solvers

Chemistry: GAMESS Heterogeneous catalysis: MSN reactions HF + MP2 + coupled cluster (CC) + fragmentation methods

Chemistry: NWChemEx Catalytic conversion of biomass CCSD(T) + energy gradients

Extreme Materials Microstructure evolution in nuclear matls AMD via replica dynamics; OTF quantum-based potentials

Additive Manufacturing Born-qualified 3D printed metal alloys Coupled micro + meso + continuum; linear solvers

*Required to demonstrate a capability and performance metric
*Required to demonstrate a capability metric
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ECP Applications
Targeting specific challenge problems that emanate from key DOE program stakeholder strategies

Domain* Challenge Problem Computational Hurdles
Quantum Materials Predict & control matls @ quantum level Parallel on-node perf of Markov-chain Monte Carlo; OpenMP

Astrophysics Supernovae explosions, neutron star mergers AMR + nucleosynthesis + GR + neutrino transport

Cosmology Extract “dark sector” physics from upcoming 
cosmological surveys

AMR or particles (PIC & SPH); subgrid model accuracy; in-situ data 
analytics

Earthquakes Regional hazard and risk assessment Seismic wave propagation coupled to structural mechanics

Geoscience Well-scale fracture propagation in wellbore 
cement due to attack of CO2-saturated fluid

Coupled AMR flow + transport + reactions to Lagrangian mechanics 
and fracture

Earth System Assess regional impacts of climate change on the 
water cycle @ 5 SYPD

Viability of Multiscale Modeling Framework (MMF) approach for 
cloud-resolving model; GPU port of radiation and ocean

Power Grid Large-scale planning under uncertainty; 
underfrequency response

Parallel nonlinear optimization based on discrete algebraic 
equations; multi-period optimization

Cancer Research Scalable machine learning for predictive 
preclinical models and targeted therapy

Increasing accelerator utilization for model search; exploiting 
reduced/mixed precision; resolving data management or 
communication bottlenecks

Metagenomics Discover and characterize microbial communities 
through genomic and proteomic analysis

Graph algorithms, distributed hashing, matrix operations and other 
discrete algorithms

FEL Light Source Protein and molecular structure determination 
using streaming light source data

Parallel structure determination for ray tracing and single-particle 
imaging

*Required to demonstrate a capability and performance metric
*Required to demonstrate a capability metric
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Adapt 
Numerics

Port 
Code

Adapt 
Models

• Rewrite, profile, and optimize
• Memory coalescing
• Loop ordering
• Kernel flattening

• Reduced synchronization
• Reduced precision
• Communication avoiding

• Mathematical representation
• “On the fly” recomputing vs. 

lookup tables
• Prioritization of new physical 

models

Efficiently utilizing GPUs goes far beyond typical code porting 
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Heterogeneous accelerated-node computing
Accelerated node computing:  Designing, implementing, delivering, & deploying          advanced 
agile software that effectively exploits heterogeneous node hardware

• Execute on the largest systems … AND on today and tomorrow’s laptops, desktops, clusters, …

• We view accelerators as any compute hardware specifically designed to accelerate certain mathematical 
operations (typically with floating point numbers) that are typical outcomes of popular and commonly used 
algorithms. We often use the term GPUs synonymously with accelerators.  

Diagram credit: 
Andrew Siegel

Ref: A Gentle Introduction to GPU Programming, Michele Rosso and Andrew Myers, May 2021

https://bssw.io/blog_posts/a-gentle-introduction-to-gpu-programming
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Summit Performance for Selected ECP KPP-1 Applications
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Performance has greatly exceeded 
expectations. Most of the increases are 
due to changes in algorithms, data 
structures, software architectures. Not a 
straightforward “port”.
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Applications

Motif-based 
framework

Portable high-
level abstractions

Directive-based 
standards

Native 
Models

AMR
FEM
PIC

RAJA
KOKKOS
OCCA

OMP
ACC

CUDA
HIP
SYCL

Programming model choice balances risk/control with productivity 

Programmer control
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Application Motifs* (what’s the app footprint?)
Algorithmic methods that capture a common pattern of computation and communication

1. Dense Linear Algebra
– Dense matrices or vectors (e.g., BLAS Level 1/2/3)

2. Sparse Linear Algebra
– Many zeros, usually stored in compressed matrices to access nonzero 

values (e.g., Krylov solvers)

3. Spectral Methods
– Frequency domain, combining multiply-add with specific patterns of 

data permutation with all-to-all for some stages (e.g., 3D FFT)

4. N-Body Methods (Particles)
– Interaction between many discrete points, with variations being particle-

particle or hierarchical particle methods (e.g., PIC, SPH, PME)

5. Structured Grids
– Regular grid with points on a grid conceptually updated together with 

high spatial locality (e.g., FDM-based PDE solvers)

6. Unstructured Grids
– Irregular grid with data locations determined by app and connectivity to 

neighboring points provided (e.g., FEM-based PDE solvers)

7. Monte Carlo
– Calculations depend upon statistical results of repeated random trials

8. Combinational Logic
– Simple operations on large amounts of data, often exploiting bit-level 

parallelism (e.g., Cyclic Redundancy Codes or RSA encryption)

9. Graph Traversal
– Traversing objects and examining their characteristics, e.g., for 

searches, often with indirect table lookups and little computation

10. Graphical Models
– Graphs representing random variables as nodes and dependencies as 

edges (e.g., Bayesian networks, Hidden Markov Models)

11. Finite State Machines
– Interconnected set of states (e.g., for parsing); often decomposed into 

multiple simultaneously active state machines that can act in parallel

12. Dynamic Programming
– Computes solutions by solving simpler overlapping subproblems, e.g., 

for optimization solutions derived from optimal subproblem results

13. Backtrack and Branch-and-Bound
– Solving search and global optimization problems for intractably large 

spaces where regions of the search space with no interesting solutions 
are ruled out. Use the divide and conquer principle:  subdivide the 
search space into smaller subregions (“branching”), and bounds are 
found on solutions contained in each subregion under consideration

*The Landscape of Parallel Computing Research: A View from Berkeley, Technical Report No. UCB/EECS-2006-183 (Dec 2006).
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ECP Co-Design Centers for key computational motifs
Project PI Name, Inst Short Description/Objective

CODAR Ian Foster, ANL Understand the constraints, mappings, and configuration choices between 
applications, data analysis and reduction, and exascale platforms

AMReX John Bell, LBNL
Build framework to support development of block-structured adaptive 
mesh refinement algorithms for solving systems of partial differential 
equations on exascale architectures

CEED Tzanio Kolev, LLNL Develop next-generation discretization software and algorithms that will 
enable finite element applications to run efficiently on future hardware

CoPA Susan Mniszewski, 
LANL

Create co-designed numerical recipes and performance-portable libraries 
for particle-based methods

ExaGraph Mahantesh
Halappanavar, PNNL

Develop methods and techniques for efficient implementation 
of key combinatorial (graph) algorithms

ExaLearn Frank Alexander, 
BNL

Deliver state-of-the-art machine learning and deep learning software at the 
intersection of applications, learning methods, and exascale platforms

Cabana
• Flexible particle data layout
• Performance portable, multi-node particle and particle-grid motifs

CabanaMD
Molecular dynamics 

proxy app

CabanaPIC
Particle-in-cell 

proxy app

Kokkos
On-node performance portability

CUDA OpenMP HIP OpenMP
Target

ExaMPM
Material point 

method proxy app

MPI 
Multi-node computation

XGC
Plasma PIC

ArborX
Geometric search

SYCL

heFFTe
Performance portable, 

multi-node FFTs

FFTW cuFFT

hypre
Preconditioners 

and solvers

rocFFT

Picasso
Continuum 

Mechanics PIC

Data 
Services

Exascale 
Platforms

Applications

CODAR

CoPA
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AMReX provides portability to ECP applications 
through multiple low-level implementations
Principal motif: structured mesh, patch-based adaptive mesh refinement

AMReX

Combustion-PELE 
(PeleC and PeleLM)

ExaStar
(Castro)

ExaSky
(Nyx) WarpX

MFIX-Exa ExaWind
(AMR-Wind)

MPI

CUDA HIP DPC++

OpenMP OpenACC
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Then (2016) and Now (2023): AMReX
Adaptive Refinement of Patch-based Structured Meshes

PI: John Bell (LBNL)
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Then (2016) and Now (2023): ExaWind
Predictive physics-based simulation of wind plants

PI: Mike Sprague (NREL)
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CEED provides multiple back-ends, including 
through its OCCA portability layer
Principal motif: unstructured mesh finite element discretization

✔ API between frontend apps and backend kernels

✔ Efficient operator descrip3on (not global matrix)

✔ Clients use any backend as a run-Vme opVon

✔ Backend can be added as plugins without recompiling

✔ Backends compete for best performance, latency vs 
throughput, opVmize for order/device, use JIT, …

backend kernels

frontend apps

libXSMM, AVX

libCEED v0.7

✔ Extensible backends 

• CPU: reference, vectorized, libXSMM
• CUDA using NVRTC cuda-gen
• OCCA (JIT): CPU, OpenMP, OpenCL, CUDA
• MAGMA
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Then (2016) and Now (2023): CEED
Center for Efficient Exascale Discretizations

PI: Tzano Kolev (LLNL)
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Then (2016) and Now (2023): ExaSMR
Resolved coupled neutronics+thermal hydraulics phenomena in nuclear reactor cores

PI: Steve Hamilton (ORNL)
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CoPA: Cabana particle library is built on a Kokkos portability layer
Principal motif: particles

Cabana
• Flexible particle data layout
• Performance portable, multi-node particle and particle-grid motifs

CabanaMD
Molecular dynamics 

proxy app

CabanaPIC
Particle-in-cell 

proxy app

Kokkos
On-node performance portability

CUDA OpenMP HIP OpenMP
Target

ExaMPM
Material point 

method proxy app

MPI 
Multi-node computation

XGC
Plasma PIC

ArborX
Geometric search

SYCL

heFFTe
Performance portable, 

multi-node FFTs

FFTW cuFFT

hypre
Preconditioners 

and solvers

rocFFT

Picasso
Continuum 

Mechanics PIC
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Then (2016) and Now (2023): CoPA
Addressing the challenges for particle-based applications to run on exascale architectures

PI: Sue Mniszewski (LANL)
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Then (2016) and Now (2023): ExaAM
Simulated additive manufacturing at the fidelity of the microstructure

PI: Matt Bement (ORNL)
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Then (2016) and Now (2023): WarpX
Modeling of charged particle beams and accelerators, lab & astro plasmas, fusion devices

PI: Jean-Luc Vay (LBNL)



32

WarpX’s “Then and Now” is compelling . . . as it is for every team
Each ECP team’s articulation of this reality will help with adoption, sustainability, evolution

Warp (as of 2016) WarpX (as of 2022)

Runs on CPUs Runs on CPUs & 3 vendors of GPUs

~ 50% Fortran + 50% Python 100% C++ + optional Python frontend

Many advanced algorithms & physics More & better algorithms & physics

Good scaling to ~6000 CPU nodes Good scaling to ~150000 CPU nodes, 
8000 GPU nodes

No dynamic load balancing Efficient load balancing

“Home-made”, brittle Mesh refinement 
capability

Mesh refinement based on robust 
AMReX library

Scaling of I/Os was a bottleneck Good scaling of I/Os with ADIOS/HDF5

Installation required compilation Easy installation with Spack, Conda, …

Manual tests ensured correctness ~200 physics benchmarks run 
automatically on every code commit

Modeling of one plasma accelerator 
stage at moderate resolution

Modeling of 10+ plasma accelerator 
stages at high resolution

Figure-of-Merit over time

50
0x

Computational power increase: 
• 500x: Warp (2016) è WarpX (2022)
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WarpX team: Gordon Bell Award Winner at SC22!!

April-July 2022: WarpX on world’s largest HPCs
L. Fedeli, A. Huebl et al., SC’22, 2022

Success story of a multidisciplinary, 
international multi-institutional team!

Movie: D. Pugmire (ORNL)
From WarpX simulation on 
4096 Summit nodes

Novel hybrid solid-gas target 
concept

Our simulations demonstrated that the
new concept leads to unprecedented
beam quality using a PW-class laserl, and
are supporting experiments at LOA (Ecole
Polytechnique, France) to validate the new
concept.
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ECP’s EXAALT Application: Methods

• Long times accessed with Accelerated MD
methods (Voter et al.)
– Parallel Trajectory Splicing (Perez et al.)
– TAMMBER (Swinburne et al.)

• Parallelizes in the time domain using
replica-based techniques

• Dynamically accurate to arbitrary precision
(Lelievre et al.)

• Intermediate size/time regime through combined domain+replica decomposition (synchronous 
sub-lattice, Amar et al.)

Regime of interest 
to EXAALT

PI: Danny Perez (LANL)
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ECP’s EXAALT Application:
Computational Capability

• AMD methods implemented through
custom-made task and data management 
system

• Fully asynchronous execution: no blocking/all-
to-all communications

• Can be used to implement a variety of complex 
workflows:
– Kinetic model construction
– Machine-learning potentials

PI: Danny Perez (LANL)
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Then (2016) and Now (2023): EXAALT
Integrated MD simulation environment to access as much Accuracy/Length/Time simulation space as possible

PI: Danny Perez (LANL)
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Surrogates

• ML-created models

• Faster and/or higher 
fidelity models

• Generative networks

• Using ML to replace 
complicated physics

• Cosmology

Control

• ML-controlled 
experiments

• Efficient exploration of 
complex space

• Reinforcement Learning

• Use RL agent to control 
light source 
experiments

• Temperature control for 
Block Co-Polymer 
(BCP) experiments

Design

• ML-created physical 
structures

• Optimized proposal for 
desired behavior of 
structure within complex 
design space 

• Graph-Convnets

• Use Graph-CNN to 
propose new structures 
that respect chemistry

• Molecular Design

ECP’s ExaLearn Co-Design Center: Application Pillars

Inverse

• ML projection from 
observation to original 
form

• Back-out complex input 
structure from observed 
data

• Regression models

• Predicting crystal 
structure from light 
source imaging

• Material structure from 
neutron scattering

Image courtesy Sutton, Barto, 
Reinforcement Learning 2017

ΩΛ ΩM σ8…

Design InverseSurrogates Control

PI: Frank Alexander (BNL)
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Then (2016) and
Now (2023): ExaLearn
Machine learning for design, control,
inverse problems, surrogates

PI: Frank Alexander (BNL)
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Can Frontier train the largest AI models (>1014 parameters)?
• We are in the quest of demonstrating the 

HPC needs for training real world scientific 
AI problems – specifically scientific text and 
images.

• Pre-train large language models (LLM) such 
as GPT-3, BLOOM, PALM, LaMDA, Gopher 
and Vision Language models on scientific 
texts like Pubmed, Aminer, MAG and 
materials related publication texts

• Frontier
– We believe we train up to 150 Trillion 

FP32 Parameter model in Frontier. This 
is approximately ~300X bigger than the 
largest PaLM model with 540B 
parameters.

– Training some of these off the shelf large 
language models could at least take 12 
days on Frontier at HPL parallel 
performance efficiency

Published in Transactions on Machine Learning Research (08/2022)
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(H) Word in context

Figure 2: Eight examples of emergence in the few-shot prompting setting. Each point is a separate model.
The ability to perform a task via few-shot prompting is emergent when a language model achieves random
performance until a certain scale, after which performance significantly increases to well-above random. Note
that models that used more training compute also typically have more parameters—hence, we show an
analogous figure with number of model parameters instead of training FLOPs as the x-axis in Figure 11.
A–D: BIG-Bench (2022), 2-shot. E: Lin et al. (2021) and Rae et al. (2021). F: Patel & Pavlick (2022). G:
Hendrycks et al. (2021a), Rae et al. (2021), and Ho�mann et al. (2022). H: Brown et al. (2020), Ho�mann
et al. (2022), and Chowdhery et al. (2022) on the WiC benchmark (Pilehvar & Camacho-Collados, 2019).

Word in Context. Finally, Figure 2H shows the Word in Context (WiC) benchmark (Pilehvar & Camacho-
Collados, 2019), which is a semantic understanding benchmark. Notably, GPT-3 and Chinchilla fail to
achieve one-shot performance of better than random, even when scaled to their largest model size of ≥5 · 1023

FLOPs. Although these results so far may suggest that scaling alone may not enable models to solve WiC,
above-random performance eventually emerged when PaLM was scaled to 2.5 ·1024 FLOPs (540B parameters),
which was much larger than GPT-3 and Chinchilla.

4 Augmented Prompting Strategies

Although few-shot prompting is perhaps currently the most common way of interacting with large language
models, recent work has proposed several other prompting and finetuning strategies to further augment the
abilities of language models. If a technique shows no improvement or is harmful when compared to the
baseline of not using the technique until applied to a model of a large-enough scale, we also consider the
technique an emergent ability.
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Figure 4: Top row: the relationships between training FLOPs, model parameters, and perplexity (ppl) on
WikiText103 (Merity et al., 2016) for Chinchilla and Gopher. Bottom row: Overall performance on the
massively multi-task language understanding benchmark (MMLU; Hendrycks et al., 2021a) as a function of
training FLOPs, model parameters, and WikiText103 perplexity.

BIG-Bench (2022) found in BBQ bias benchmark (Parrish et al., 2022) that bias can increase with scaling for
ambiguous contexts. As for toxicity, Askell et al. (2021) found that while larger language models could produce
more toxic responses from the RealToxicityPrompts dataset (Gehman et al., 2020), this behavior could be
mitigated by giving models prompts with examples of being “helpful, harmless, and honest.” For extracting
training data from language models, larger models were found to be more likely to memorize training data
(Carlini et al., 2021; 2022), though deduplication methods have been proposed and can simultaneously reduce
memorization while improving performance (Kandpal et al., 2022; Lee et al., 2022a). The TruthfulQA
benchmark (Lin et al., 2021) showed that GPT-3 models were more likely to mimic human falsehoods as they
got larger, though Rae et al. (2021) later showed on a multiple-choice version that scaling Gopher to 280B
enabled emergent performance substantially better than random.

Beyond the above, emergent risks also include phenomena that might only exist in future language models
or that have not yet been characterized in current language models. Some such behaviors, as discussed
in detail in Hendrycks et al. (2021b), could be backdoor vulnerabilities, inadvertent deception, or harmful
content synthesis. Approaches involving data filtering, forecasting, governance, and automatically discovering
harmful behaviors have been proposed for discovering and mitigating emergent risks (Bender et al., 2021;
Weidinger et al., 2021; Steinhardt, 2021; Ganguli et al., 2022; Perez et al., 2022, inter alia). For a more
detailed discussion of the risks of large language models, including emergent risks, see Bender et al. (2021);
Steinhardt (2021); Bommasani et al. (2021); Ganguli et al. (2022).

5.5 Sociological changes

Finally, the emergent abilities discussed here focus on model behavior and are just one of several types of
emergence in NLP (Manning et al., 2020; Teehan et al., 2022). Another notable type of qualitative change is
sociological, in which increasing scale has shifted how the community views and uses language models. For
instance, NLP has historically focused on task-specific models (Jurafsky & Martin, 2009). Recently, scaling
has led to an explosion in research on and development of models that are “general purpose” in that they are
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BIG for Science?
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AI for science
What comes after exascale

• Over 1,300 scientists participated in 4 
town halls during the summer/fall of 2019

• Research opportunities in AI 

– Biology, chemistry, materials,

– Climate, physics, energy, cosmology

– Mathematics and foundations

– Data life cycle

– Software infrastructure

– Hardware for AI

– Integration with scientific facilities

• Modeled after the Exascale Series in 2007

• ASCAC subcommittee report Sept. 2020
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Then (2016) and Now (2023): ExaSGD
Optimization for the modern electric power grid

PI: Chris Oehmen (PNNL)
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Then (2016) and Now (2023): ExaBiome
Microbiome analysis

PI: Kathy Yelick (LBNL)
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Then (2016) and Now (2023): Energy Exascale Earth System Model
Cloud-resolving Climate Modeling of the Earth’s Water Cycle

PI: Mark Taylor (SNL)
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Then (2016) and Now (2023):
EQSIM
End-to-end simulation of earthquake phenomena

PI: David MacCallen (LBNL)
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Then (2016) and Now (2023): CLOVER
Preparing linear algebra and FFT for exascale

PI: Hartwig Anzt (UTK)
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Then (2016) and Now (2023): CLOVER
Preparing linear algebra and FFT for exascale

PI: Hartwig Anzt (UTK)
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Then (2016) and Now (2023): CLOVER
Preparing linear algebra and FFT for exascale

PI: Hartwig Anzt (UTK)
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ST’s Extreme-scale Scientific Software Stack (E4S) 
is a key ECP product to sustain and evolve

• E4S: HPC software ecosystem – a curated software portfolio
• A Spack-based distribution of software tested for interoperability 

and portability to multiple architectures
• Available from source, containers, cloud, binary caches
• Leverages and enhances SDK interoperability thrust
• Not a commercial product – an open resource for all
• Growing functionality: November 2022: E4S 22.11 – 100+ full release products

https://e4s.io
E4S lead: Sameer Shende (U Oregon)

Also includes other products, e.g.,
AI: PyTorch, TensorFlow, Horovod
Co-Design: AMReX, Cabana, MFEM

https://spack.io
Spack lead: Todd Gamblin (LLNL)

Community Policies
Commitment to SW quality

DocPortal
Single portal to all                 
E4S product info

Portfolio testing
Especially leadership 

platforms

Curated collection
The end of dependency hell

Quarterly releases 
Release 22.2 – February

Build caches
10X build time 
improvement

Turnkey stack
A new user experience https://e4s.io Post-ECP Strategy

LSSw, ASCR Task Force

https://e4s.io/
https://spack.io/
https://e4s.io/
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ECP: Key Takeaways
• The Exascale Computing Project (ECP) is not just about developing and demonstrating the ability of new and 

enhanced DOE mission critical applications to tackle currently unsolvable problems of National interest . . . but 
we also are building and deploying a new Extreme Scale Scientific Software Stack (E4S – e4s.io) that 
greatly lowers the barrier to adoption of new technologies and to porting on advanced hardware. We are building 
a scientific software ecosystem for decades to come that is present and supports scientific computing from 
laptops to desktops to clusters to leadership systems

• The fundamental tenant of ECP is not about building boutique applications and a software ecosystem that can 
only execute on the Nation’s largest systems, but it is about accelerated node computing, namely designing, 
implementing, delivering, and deploying advanced agile software that effectively exploits 
heterogeneous node hardware on today and tomorrow’s laptops and desktops

• We view accelerators as any compute hardware specifically designed to accelerate certain mathematical 
operations (typically with floating point numbers) that are typical outcomes of popular and commonly used 
algorithms. We often use the term GPUs synonymously with accelerators.

• Compute hardware, from laptop to the largest systems in the world (e.g., ORNL’s Summit system), are made up 
of accelerated nodes. Accelerated-node computing is here to stay
– Accelerators today: GPUs Tomorrow: better GPUs or FPGAs or other ASICs? Near future: quantum?

• ECP’s first-mover applications & E4S software stack are available for testing (even on laptops) and have 
greatly demystified and lowered the barrier to productive utilization of heterogeneous accelerated-node 
hardware.



52

Retrospective
• The US Department of Energy (DOE) has been a leader in High Performance Computing and ”invented” it for the 

purposes of “design predictability” 80 years ago. Lots of lessons learned and ROI evidence to share. J

• Development and application of advanced, predictive modeling and simulation (M&S) – both 
computational and data science – has long been a mainstay and critical crosscutting technology for the 
DOE and its National Laboratories (17 of them!) in achieving its mission goals in science, technology, and national 
security. This has never been more vibrant and foundational than today.

• Accelerated compute performance (FLOPS, memory, memory B/W, etc.) and enhanced physical models, 
numerical algorithms, and software architecture enabled by this performance directly correlate with more 
predictive M&S tools, technologies, outcomes, impact. This does not come without difficulties, challenges, 
pain, and perseverance: from GF to TF to PF to EF. We celebrate these milestones - each one comes with 
”tipping points” that are disruptive for app and software stack development yet accompanied by (often 
unanticipated) high ROI

• The EF “exascale era” (>1018 floating operations / sec) is upon us, and many institutions and agencies 
have been preparing and investing for this milestone for over a decade: DOE included!

• DOE’s Exascale Computing Initiative (ECI), of which the Exascale Computing Project (ECP) is a part, was initiated 
almost six years ago and is poised and ready to demonstrate the tremendous “science return” of this 
technology
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Questions?
kothe@ornl.gov,  https://www.exascaleproject.org/contact-us/

For more info
• Alexander F. et al. Exascale Applications: Skin in the Game, Phil. Trans. R. Soc. A 

378: 20190056 (2020) (http://dx.doi.org/10.1098/rsta.2019.0056).
• Douglas Kothe, Stephen Lee, and Irene Qualters, Exascale Computing in the United 

States, Computing in Science and Engineering 21(1), 17-29 (2019).

mailto:kothe@ornl.gov
http://dx.doi.org/10.1098/rsta.2019.0056

