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Exascale Applications: potential outcomes and impact
Will be far-reaching for decades to come

» Predictive microstructural evolution of novel chemicals and materials for energy applications.
* Robust and selective design of catalysts an order of magnitude more efficient at temperatures hundreds of degrees lower.

» Accelerate the widespread adoption of additive manufacturing by enabling the routine fabrication of qualifiable metal alloy
parts.

« Design next-generation quantum materials from first principles with predictive accuracy.

* Predict properties of light nuclei with less than 1% uncertainty from first principles.

« Harden wind plant design and layout against energy loss susceptibility, allowing higher penetration of wind energy.

« Demonstrate commercial-scale transformational energy technologies that curb fossil fuel plant CO2 emission by 2030.
» Accelerate the design and commercialization of small and micronuclear reactors.

» Provide the foundational underpinnings for a ‘whole device’ modelling capability for magnetically confined fusion
plasmas useful in the design and operation of ITER and future fusion reactors.
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Exascale Applications: potential outcomes and impact
Will be far-reaching for decades to come

« Address fundamental science questions such as the origin of elements in the universe, the behavior of matter at
extreme densities, the source of gravity waves; and demystify key unknowns in the dynamics of the universe (dark matter,
dark energy and inflation).

» Reduce the current major uncertainties in earthquake hazard and risk assessments to ensure the safest and most cost-
effective seismic designs.

» Reliably guide safe long-term consequential decisions about carbon storage and sequestration.

» Forecast, with confidence, water resource availability, food supply changes and severe weather probabilities in our
complex earth system environment.

+ Optimize power grid planning and secure operation with very high reliability within narrow operating voltage and frequency
ranges.

« Develop treatment strategies and pre-clinical cancer drug response models and mechanisms for RAS/RAF-driven
cancers.

» Discover, through metagenomics analysis, knowledge useful for environment remediation and the manufacture of novel
chemicals and medicines.

« Dramatically cut the cost and size of advanced particle accelerators for various applications impacting our lives, from
sterilizing food of toxic waste, implanting ions in semiconductors, developing new drugs or treating cancer.




DOE HPC Roadmap to Exascale Systems

_____decommissioned _________

FY 2012

ORNL

FY 2016

LBNL

FY 2018

ORNL

FY 2021 FY 2022 FY 2023
ORNL Systems
HPE/AMD /

ANL

LANL/SNL
Cray/Intel Xeon/KNL

LLNL
IBM/NVIDIA

Intel/HPE
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Decadal effort to deliver U. S. Exascale systems
led to Frontier

ECP continues maturation of key

B e el A contract to build Frontier is

awarded to Cray. A contract to

first exascale workshops/town halls Development of software and prototype and test key technologies Hardware to build Frontier begins
and Co-design efforts applications begins. is also awarded to Cray. arriving at ORNL in July.
a - Build Contract Frontier
Science Drivers ECP .
Awarded Installation
2012 2018 2020
2007 2017 2019 2021
DOE Invests in Construction "Go"” for system
key technologies begins at OLCF build
Technologies required for exascale Construction of 40-megawatt ORNL and HPE reach a “Go
are incubated and matured through datacenter begins. Decision” for system build.
FastForward and DesignForward.
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Frontier overview AMD node
« 1 AMD “Trento” CPU
e 4 AMD MI250X GPUs

- ; ' ‘ f)I]erga\tIJ\f\[r)arc]:(I)(des « 512 GiB DDR4 memory on
sompme | | + 8000 Tbs 512 GIB HEM26 fotdl per
G | FERY/INTTEN * Supporis 400 kW node (128 GiB HBM per
0= o — - T GPU)
- arvce coe « Coherent memory across
the node
System « 4 TB NVM
» 2 EF peak DP Flops « GPUs & CPU fully connected
« /4 compute racks . with AMD Infinity Fabric
« 29 MW power consumption o * 4 Cassini NICs, 100 GB/s
* 9408 nodes B (i network BW
« 9.2 PB memory (4.6 PB HBM, 4.6 B ‘
PB DDRA') . - Compute blade
« Cray Slingshot network with | « 2 AMD nodes
dragonfly topology

»
)
'
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« 37 PB node local storage
« /16 PB center-wide storage
« 4000 ft2 footprint

= All water cooled, even DIMMS and NICs
ELCP ==




Frontier Node FRONTIER

All GPUs and CPU are fully connected on node { NVM ]
and have coherent shared memory

Custom AMD EPYC CPU (64 core)

e Supports Infinity Fabric
e Adds PCle links for on node NVM (4 TB)
512 GB of DDR4 memory (1/2 TB per node)

Four AMD MI250X GPUs X3eg R3ec
* Announced by AMD November 8 2021 s |
128 GB of HBM2e each (1/2 TB per node) |
* 3.2 TB/s memory bandwidth

Each GPU is connected to a Slingshot NIC | et

* Eliminates GPU-CPU link bottleneck seen in S
Titan and Summit I | ]

« 1 GPU or CPU can use all NICS together BEERA

—\ s Slingshot NICS
e P =5
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Frontier multi-tier storage system is desighed to excel
at Data Science and Al for Scientific Discovery

Capacity Performance

Multi-tier 1/O Subsystem Read Write

37 PB Node Local Storage 65.9 TB/s 62.1 TB/s
11 Billion IOPS

11 PB Performance tier 9.4TB/s 9.4TB/s

695 PB Capacity tier 5.2TB/s 4.4TB/s
10 PB Metadata 2M Transactions per sec

Two 2TB SSD NVM per node
Local Storage (Flash)

Gazelle SSD Storage board
(Performance Tier and
Metadata)

=P

Moose HDD Storage board
(Capacity Tier)




Energy Efficient Computing — Frontier achieves 14.5 MW per EF

Since 2009 the biggest concern with reaching Frontier first US Exascale computer
Exascale has been energy consumption Multiple GPU per CPU drove energy efficiency
Jaguar 3,043 MW/EF
« ORNL pioneered GPU use in supercomputing ORNL GPU/CPU
beginning in 2012 with Titan thru today with Frontier. Jaguar none
Significant part of energy efficiency improvements. Titan 1
Summit 3
 ASCR [Fast, Design, Path] Forward vendor Frontier 4

investments in energy efficiency (2012-2020) further
reduced the power consumption of computing chips
(CPUs and GPUs)..

Exascale made possible
by 200x improvement
in energy efficient

« 200x reduction in energy per FLOPS from Jaguar
to Frontier at ORNL

Titan computing
ORNL acthleves I.add_ltlanaI ?_ner%}/z sgvmgs from using SIOMWEF o "%  Erontler
warm water cooling in Frontier ( ). - 65 MW/EF 15 MW/EF
ORNL Data Center PUE=1.03 2009 2012 2017 2021
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The Exascale Computing Project (ECP) enables US revolutions in
technology development; scientific discovery; healthcare; energy,

economic, and national security

Develop exascale-ready applications and
solutions that address currently infractable
problems of strategic importance and
national interest.

Create and deploy an expanded and
vertically integrated software stack on DOE
HPC exascale and pre-exascale systems,

defining the enduring US exascale
ecosystem.

Deliver US HPC vendor technology
advances and deploy ECP products to DOE
HPC pre-exascale and exascale systems.
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Deliver exascale simulation and data
science innovations and solutions to
national problems that enhance US
economic competitiveness, change our
quality of life, and strengthen our national
security.

* Funded by DOE Office of Science, Advanced Scientific
Computing Research (ASCR) and DOE National
Nuclear Security Administration (NNSA)

« 7-year project — $1.8B
« 6 lead labs: ORNL, ANL, LBNL, LLNL, SNL, LANL
* More than 80 research teams

- >1000 researchers

- Drawn heavily from 17 DOE labs plus national
universities and US companies (100+ each)




Each HPC system has served a vital role for ECP Teams
From benchmarking to development to now demonstration of key performance parameters (KPPs)

Benchmark system for many
ECP AD and ST teams

Multi-GPU system for scaling,
algorithm & model dev, S/W design

Target system for KPP threshold
demonstrations

Titan (2012) Cray Summit (2017) IBM Frontier (2021) HPE

Peak

# nodes

Node

Memory

On-node
interconnect

System
Interconnect

Topology

Storage

Power

27 PF
18,688

1 AMD Opteron CPU
1 NVIDIA Kepler GPU

PCI Gen2
No coherence
across the node

Cray Gemini network
6.4 GB/s

3D Torus

32 PB, 1 TB/s,
Lustre Filesystem

9 MW

200 PF
4,608

2 1IBM POWER9™ CPUs
6 NVIDIA Volta GPUs

2.4 PB DDR4 + 0.4 HBM +
7.4 PB On-node storage

NVIDIA NVLINK
Coherent memory
across the node

Mellanox Dual-port EDR IB 25 GB/s

Non-blocking Fat Tree

250 PB, 2.5 TB/s, IBM Spectrum Scale™
with GPFS™

13 MW

>15EF
9,408

1 AMD EPYC CPU
4 AMD Radeon Instinct GPUs

4.6 PB DDR4 + 4.6 PB HBM2e +
37 PB On-node storage, 66 TB/s Read 62
TB/s Write

AMD Infinity Fabric
Coherent memory
across the node

Four-port Slingshot network
100 GB/s

Dragonfly

695 PB HDD+11 PB Flash Performance Tier,
9.4 TB/s and 10 PB Metadata Flash

29 MW




Performance on current and next-gen HPC architectures requires
effective use of GPUs

2012 2016 2022 1.0 A
2000 -
1750 A 0.8 1
—~ 1500 -
o
% 1250 A 0.6
& 1000 1
o ]
5 7504 0.4
500 A 0.2
250 1 EEE GPU FLOPS
=3 CPU FLOPS
0- 0.0-
Titan Summit Frontier Titan Summit Frontier
Peak performance FLOPS by device
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ECP Application Portfolio: 24 First-Movers of Strategic Importance to DOE

g Starting Point
« 24 applications and 6 co-design projects

Ne

* Including 78 separate codes

* Representing over 10 million lines of code

Re¢ * Many supporting large user communities

» Covering broad range of mission critical S&E domains
* Mostly all MPI or MP1+OpenMP on CPUs

stew

Multi

Sir;‘; » Each envisioned innovative S&E enabled by 100X increase in computing power

Phyl "« Path to harnessing 100-fold improvement initially unknown likely to have disruptive impact on
software unlike anything in last 30 years

Current status

» All applications have, with their own unique development plans, made tremendous progress in
model and algorithm development and software architecture redesign / refactor. Most
applications have integrated and adopted software abstraction layers or co-designed motif-
based components and frameworks to ensure efficient and portable GPU implementations.

* Many application have already realized >50X increase in science work rate performance on the
Summit system at ORNL since starting ECP development activities in 2016

- Massive software investments




ECP Applications

Targeting specific challenge problems that emanate from key DOE program stakeholder strategies

Base Challenge Problem Risks and Challenges

Wind Energy 2x2 5 MW turbine array in 3x3x1 km3 domain  Linear solvers; structured / unstructured overset meshes

Small Modular Reactor with complete in-

Nuclear Ener
9y vessel coolant loop

Coupled CFD + Monte Carlo neutronics; MC on GPUs

Fossil Energy Burn fossil fuels cleanly with CLRs AMR + EB + DEM + multiphase incompressible CFD
Combustion Reactivity controlled compression ignition AMR + EB + CFD + LES/DNS + reactive chemistry
Accelerator Design TeV-class 1023 times cheaper & smaller AMR on Maxwell’s equations + FFT linear solvers + PIC
Magnetic Fusion Coupled gyrokinetics for ITER in H-mode Coupled continuum delta-F + stochastic full-F gyrokinetics
Chemistry: GAMESS Heterogeneous catalysis: MSN reactions HF + MP2 + coupled cluster (CC) + fragmentation methods
Chemistry: NWChemEXx Catalytic conversion of biomass CCSD(T) + energy gradients

Extreme Materials Microstructure evolution in nuclear matls AMD via replica dynamics; OTF quantum-based potentials
Additive Manufacturing Born-qualified 3D printed metal alloys Coupled micro + meso + continuum; linear solvers
E(E\I:’ *Required to demonstrate a capability and performance metric

*Required to demonstrate a capabilitx metric




ECP Applications

Targeting specific challenge problems that emanate from key DOE program stakeholder strategies

Challenge Problem Computational Hurdles

Quantum Materials

Astrophysics
Cosmology
Earthquakes

Geoscience
Earth System

Power Grid
Cancer Research

Metagenomics

FEL Light Source

*Required to demonstrate a capabilitx metric

Predict & control matls @ quantum level

Supernovae explosions, neutron star mergers

Extract “dark sector” physics from upcoming
cosmological surveys

Regional hazard and risk assessment

Well-scale fracture propagation in wellbore
cement due to attack of CO,-saturated fluid

Assess regional impacts of climate change on the
water cycle @ 5 SYPD

Large-scale planning under uncertainty;
underfrequency response

Scalable machine learning for predictive
preclinical models and targeted therapy

Discover and characterize microbial communities
through genomic and proteomic analysis

Protein and molecular structure determination
using streaming light source data

Parallel on-node perf of Markov-chain Monte Carlo; OpenMP

AMR + nucleosynthesis + GR + neutrino transport

AMR or particles (PIC & SPH); subgrid model accuracy; in-situ data
analytics

Seismic wave propagation coupled to structural mechanics

Coupled AMR flow + transport + reactions to Lagrangian mechanics
and fracture

Viability of Multiscale Modeling Framework (MMF) approach for
cloud-resolving model; GPU port of radiation and ocean

Parallel nonlinear optimization based on discrete algebraic
equations; multi-period optimization

Increasing accelerator utilization for model search; exploiting
reduced/mixed precision; resolving data management or
communication bottlenecks

Graph algorithms, distributed hashing, matrix operations and other
discrete algorithms

Parallel structure determination for ray tracing and single-particle
imaging

*Required to demonstrate a capability and performance metric




Efficiently utilizing GPUs goes far beyond typical code porting

Rewrite, profile, and optimize
Memory coalescing

Loop ordering

Kernel flattening

ECP

EXASCALE
COMPUTING
PROJECT

Reduced synchronization

Reduced precision
Communication avoiding

Mathematical representation
“On the fly” recomputing vs.
lookup tables

Prioritization of new physical
models

16




GPU (hundreds of cores)

Heterogeneous accelerated-node computing

Accelerated node computing: Designing, implementing, delivering, & deploying
agile software that effectively exploits heterogeneous node hardware

» Execute on the largest systems ... AND on today and tomorrow’s laptops, desktops, clusters, ...

« We view accelerators as any compute hardware specifically designed to accelerate certain mathematical
operations (typically with floating point numbers) that are typical outcomes of popular and commonly used
algorithms. We often use the term GPUs synonymously with accelerators.

CPU = CPU/GPU —> CPU/Multi-GPU > Diverse CPU/Multi-GPU
S:Jvn zlifi{c?::iggéi features @\l\,ﬂvﬁeﬁlﬁd&@

Di dit: [ > . 1
Andrew Siegel GPU-Resident

< Current focus

_— . Ref: A Gentle Introduction to GPU Programming, Michele Rosso and Andrew Myers, May 2021



https://bssw.io/blog_posts/a-gentle-introduction-to-gpu-programming

Summit Performance for Selected ECP KPP-1 Applications

400

1356
m 2019 Summit FOM m 2020 Summit FOM m 2021 Summit FOM

350

Performance has greatly exceeded
300 expectations. Most of the increases are
due to changes in algorithms, data

structures, software architectures. Not a
stralghtforward ‘port”.

250

2021

200

150

2020

100

N
C|

50
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LatticeQCD NWChemEX EXAALT QMCPACK ExaSMR WD MApp WarpX ExaSky EQSIM E3SM-MMF CANDLE

!
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Programming model choice balances risk/control with productivity

Productivity/portability

Applications

AMR
FEM
PIC

Motif-based
framework

RAJA
KOKKOS
OCCA

Portable high-
level abstractions

Directive-based

standards
Native CUDA
Models HIP
> SYCL

Programmer control




Application Motifs* (what's the app footprint?)

Algorithmic methods that capture a common pattern of computation and communication

1.

Dense Linear Algebra
— Dense matrices or vectors (e.g., BLAS Level 1/2/3)

Sparse Linear Algebra

- Many zeros, usually stored in compressed matrices to access nonzero
values (e.g., Krylov solvers)

Spectral Methods

- Frequency domain, combining multiply-add with specific patterns of
data permutation with all-to-all for some stages (e.g., 3D FFT)

N-Body Methods (Particles)

- Interaction between many discrete points, with variations being particle-
particle or hierarchical particle methods (e.g., PIC, SPH, PME)

Structured Grids

— Regular grid with points on a grid conceptually updated together with
high spatial locality (e.g., FDM-based PDE solvers)

Unstructured Grids

- lrregular grid with data locations determined by app and connectivity to
neighboring points provided (e.g., FEM-based PDE solvers)

Monte Carlo
— Calculations depend upon statistical results of repeated random trials

*The Landscape of Parallel Computing Research: A View from Berkeley, Technical Report No. UCB/EECS-2006-183 (Dec 2006).

8. Combinational Logic

- Simple operations on large amounts of data, often exploiting bit-level
parallelism (e.g., Cyclic Redundancy Codes or RSA encryption)

9. Graph Traversal

- Traversing objects and examining their characteristics, e.g., for
searches, often with indirect table lookups and little computation

10. Graphical Models

— Graphs representing random variables as nodes and dependencies as
edges (e.g., Bayesian networks, Hidden Markov Models)

11. Finite State Machines

- Interconnected set of states (e.g., for parsing); often decomposed into
multiple simultaneously active state machines that can act in parallel

12. Dynamic Programming

- Computes solutions by solving simpler overlapping subproblems, e.g.,
for optimization solutions derived from optimal subproblem results

13. Backtrack and Branch-and-Bound

— Solving search and global optimization problems for intractably large
spaces where regions of the search space with no interesting solutions
are ruled out. Use the divide and conquer principle: subdivide the
search space into smaller subregions (“branching”), and bounds are
found on solutions contained in each subregion under consideration




ECP Co-Design Centers for key computational motifs

Project Pl Name, Inst Short Description/Objective
CODAR lan Foster, ANL Undgrst_and the constraln_ts, mappings, and configuration choices between
applications, data analysis and reduction, and exascale platforms
Build framework to support development of block-structured adaptive
AMReX John Bell, LBNL mesh refinement algorithms for solving systems of partial differential
equations on exascale architectures
CEED Tzanio Kolev, LLNL Develop_ n_ext—generatlon cj|sc_ret|zat|on soft\_/vgre and algorithms that will
enable finite element applications to run efficiently on future hardware
CoPA Susan Mniszewski, = Create co-designed numerical recipes and performance-portable libraries
LANL for particle-based methods
ExaGraph Mahantesh Develop methods and techniques for efficient implementation
P Halappanavar, PNNL of key combinatorial (graph) algorithms
Frank Alexander, Deliver state-of-the-art machine learning and deep learning software at the
ExalLearn : : L )
BNL intersection of applications, learning methods, and exascale platforms
d‘s CabanaMD CabanaPIC ExaMPM Picasso ? ;%:{%E}E;x

- -— ’
I'I'
e

>
% | el ,

‘ EXASCALE DISCRETIZATIONS
° 3
F‘?“ Applications
AMReX
P \
ECP &

Services | I Platforms

Molecular dynamics
proxy app

Continuum

Particle-in-cell
proxy app

Cabana
* Flexible particle data layout

Material point
method proxy app * STRUMPACK/SUPERLU
* ExaSGD
* ExaWind

* ATDM

Mechanics PIC

XGC
Plasma PIC

CoPA }

ArborX
Geometric search

« Performance portable, multi-node particle and particle-grid motifs
Kokkos

hypre heFFTe
Preconditioners |WaElzielipElle=Nelelgez10)/%
and solvers multi-node FFTs
On-node performance portability

FFTW chFT rocFFT 0 e
pen
e openMP nm Sver

Algorlthms
* Graph traversal

* Matching & covering
* Graph coloring

* Clustering

* Partitioning

* Inf maximization

Algorithms

Software and Standards:

* GraphBLAS, CombBLAS

¢ GMT, Matchbox, Grappolo
* KokkosKernels, Trilinos

* ColPack

MPI
Multi-node computation

Exascale




AMReX provides portability to ECP applications =
through multiple low-level implementations "AMReX

Principal motif: structured mesh, patch-based adaptive mesh refinement ﬁ

Combustion-PELE ExaStar ExaSky MFIX-Exa

(PeleC and PeleLM) (Nyx) ExaWind

(AMR-Wind)

0. 40. 80. 120.

Particle speed, v (cm/s)

: AMReX
: MPI j[ OpenMP } [ OpenACC
[ CUDA ][ HIP ][ DPC++ ]

ECP === https://amrex-codes.github.io/




Then (2016) and Now (2023): AMReX

Adaptive Refinement of Patch-based Structured Meshes

AMReX Then AMReX Now

Mix of C++11 (data structures, high-level control flow) and Fortran Source code Source code: pure C++17 with extensive use of template metaprogramming
(low-level numerical operations)

MPI + OpenMP only Hybrid Parallelism MPI + X, where X is one of OpenMP (CPUs) or CUDA, HIP or SYCL (NVIDIA,
AMD, or Intel GPUs)
Support for redistribution and particle-mesh, array-of-structs only Particles Both array-of-struct and struct-of-array data, halo exchange + neighbor lists
for particle-particle collisions
None Complex Geometry Support for embedded boundaries via cut-cell approach
Native multi-level geometric multigrid Linear Solvers Same + EB-aware options, interfaces to hypre and PETSc
GNUMake only Installation CMake + GNUMake for compilation from source
One step installation with Spack
Native plotfiles 10 Native plotfiles + HDF5, support for compression with SZ and ZFP,
Asynchronous |0
Vislt, yt, Paraview Visualization Same + support for in-situ analysis and visualization with ALPINE, SENSEI
Manual runs of test suite Development Extensive test coverage with continuous integration
Limited documentation policies/practices Extensive online documentation and tutorials
Informal code reviews for critical changes Formal code reviews for all changes
Applications could run at full-scale on Edison, Cori KNL Performance AMReX applications can run efficiently at full-scale on Perlmutter,

Fugaku, Summit, and Frontier.

’:"\
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Pl: John Bell (LBNL)




Then (2016) and Now (2023): ExaWind

Predictive physics-based simulation of wind plants

Then (2016)

Approach: Create computational fluid/structure dynamics (CFD and CSD) codes for
Reynolds-averaged Navier-Stokes (RANS)/large-eddy simulations (LES) where wind turbine
geometry and blade boundary layers are resolved and include moving meshes, fluid-
structure interaction, and atmospheric turbulence

Starting-Point Codes:
Nalu: https://github.com/nalucfd/
* Unstructured-grid, incompressible-flow CFD

LES turbulence model

C/C++

Built on Trilinos STK, Tpetra/Belos/Muelu solvers, and Kokkos
* Mesh rotation achieved through a sliding-mesh interface
OpenFAST: https://github.com/openfast/
* Whole-turbine simulation code (structural dynamics, control)
* Fortran90

Challenges:

* Target problem requires resolving spatial scales going from blade boundary layers
(e.g., 10° m) to the wind farm domain (e.g., 10° m), i.e., at least eight orders of
magnitude

* Finite volumes with extreme aspect ratios (e.g., 10,000), which are necessary for hybrid-
RANS/LES, were a serious challenge linear-system solvers

* Time-integration scheme required impractically small time-step sizes (e.g., 10 s) for
production simulations

*» Sliding-mesh approach presented mesh-creation challenges and no clear pathway for
yaw motions

Now (2023)

Shift in Approach: Added AMR-Wind as a
background solver and made Nalu-Wind the
near-body solver; coupling via overset meshes

Primary Application Codes: o

.............

Paragrrad

- amiuchred rwen rractasc-emb
Nalu-w‘nd B Wre roce AMR nd wosel

Proof-of-concept simulation of flow over a sphere

» https://github.com/exawind/nalu-wind using the hybrid Nalu-Wind/AMR-Wind solver.
* Wind-specific offshoot from Nalu; primarily used for near-body flows

* hypre is primary linear-system-solver package
Hybrid-RANS/LES with time integrator that enables practical time step sizes
Overset meshes (via TIOGA, https://github.com/jsitaraman/tioga) is primary method
for moving meshes
* Performant on NVIDIA GPUs; Advanced Micro Devices, Inc. (AMD) GPUs are in progress
AMR-Wind
. | //githul ; ind/amr-wind
* Structured-grid adaptive mesh refinement (AMR) CFD code; background solver
* C++ and built on the AMReX library
* Performant on NVIDIA and AMD GPUs
OpenFAST
* No pathway to support parallelization or GPUs
+» Starting new FY23 WETO project to create replacement: OpenTurbine
https://github.com/exawind/openturbine

ECP =5

Pl: Mike Sprague (NREL)




CEED provides multiple back-ends, including
through its OCCA portability layer

Principal motif: unstructured mesh finite element discretization

’.!
L)
)

EXASCALE DISCRETIZATIONS

(frontend apps]

Nek  MFEM  PETSc @) (i gi’a ‘TEY
Nek5000

||bCEED Nekbone

NekCEM
f‘ﬂ_" .
' LE;?J (S JSEEAmEl . versions

IbXSMM, AVX (S / /" MAGMA
| backend kernels |

libCEED m

V' API between frontend apps and backend kernels

V Efficient operator description (not global matrix) libCEED v0.7 a0 ﬁ

V Clients use any backend as a run-time option

V Extensible backends

V Backend can be added as plugins without recompiling , ,
* CPU: reference, vectorized, libXSMM

V' Backends compete for best performance, latency vs « CUDA using NVRTC cuda-gen
throughput, optimize for order/device, use JIT, ... - OCCA (JIT): CPU, OpenMP, OpenCL, CUDA
N s « MAGMA
E«Q;\P https://ceed.exascaleproject.org/




Then (2016) and Now (2023): CEED

Center for Efficient Exascale Discretizations

Then

PDE-based simulations on unstructured grids
High-order and spectral finite elements
\/any order space on any order mesh

V' curved meshes,

vV unstructured AMR

vV matrix-free methods

\/optimized low-order support

non-conforming AMR, 2™ order mesh

10% order basis function

EXASCALE
COMPUTING
PROJECT
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Now

CEED discretization libraries

V High-Level API: Nek & MFEM projects
v Nek5000/NekRS: nek5000.mcs.anl.gov
v/ MFEM: mfem.org

MFEM BP1 FAST MFEM BP1 MMA

MFEM BP1 XEL vs EAST

. wepel —pwml
> —p=2 *~p=2
& y{r=2 o p=3 -p=b
8 Sy —pwid T Py
o - p=5 * p=5
': 3| ~—p=6 - '.A,T;
1 ey Lo
4; p=8 p=8 B
| J
=2 f
= /
t . . “u
§1 : / 3 / ‘
et P [
.eﬁ-'g/ﬁ [ v100] [ LI oot miool | ..~ a100]
?0' 10 (08 100 107 10° 10* 10* 1w’ 107 10° 10* 10° 10* 107

New MFEM GPU kernels: (1) have better strong scaling, (2) perform on
NVIDIA + AMD GPUs, and (3) can utilize tensor cores

libCEED github.com/CEED/libceed

V Low-Level API: new library for efficient operator evaluation
v state-of-the-art CPU and GPU kernel performance

A=P'G"B"DBGP|

ploba) domain sub-domans wernents quadrature )
aV (shaved) dufs dawvice (local) dafs ofemant dofs pont values /-)

G

E . 6 HEHE-AEE BB

e B || EE 'E' Sfapeig: ’——m[j[:][:]

A | | R H B B BHEBE

T-veclor L-veclor E-vector Q-veclor

Finite element operator decomposition

Throughput (GDOF/s)

Miniapps: Laghos, libParanumal, hipBone

MI250X

» [

Benchmarks

v bake-off problems: BP1-BP6

V solver BPs: BPS3, BPS5

v high-order community benchmarks

SaWw MDYSIaY

High-order software ecosystem
V high-order meshing, optimization RA,V UJJ MAGMA

v high-order visualization
EPETSc Ayre-

v performance portability, GPUs
V scalable “matrix-free” solvers vnfu ANscent PU mi

More information and downloads

vV CEED project website: ceed.exascaleproject.org
vV CEED code repositories: github.com/CEED

Pl: Tzano Kolev (LLNL)




Then (2016) and Now (2023): ExaSMR

Resolved coupled neutronics+thermal hydraulics phenomena in nuclear reactor cores

MC Neutronics Then

MC Neutronics Now

* Minimal GPU support

* Fixed material temperatures

* Single statepoint (limited isotopic depletion)
* Performance: 107 particles/second

SMR core geometry

Total reaction rate in SMR core

\ CPU vs. GPU performance over time ‘

* Support for Nvidia, AMD, and Intel GPUs using HIP and
OpenMP target offload

* On-the-fly Doppler broadening
* Integrated isotopic depletion capability
* Performance: >10° particles/second

.’openMc OpenMC Performance by Year.

Dual Socket CPU vs. Single GPU
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* Single fuel assembly simulations

* Performance: 3x10° DOF/second

Coolant flow through
mixing vane 1000 pebbles

* Nek5000: CPU only (experimental OpenACC support)

* Max problem size: 30 million elements, 10 billion DOF

Simulation of flow through

PI: Steve Hamilton (ORNL)

* NekRS: Efficient execution on Nvidia, AMD, and Intel
GPUs using OCCA

* Full SMR core with effect of heat exchanger

* Improved solver/preconditioning capabilities

* State-of-the-art mixing vane modeling

* Max problem size: 1 billion elements, 350 billion DOF
* Performance: ~5x10'! DOF/second

Fluid streamlines downstream of mixing vane

NekRS simulation of FHR pebble
bed reactor (350k pebbles)




CoPA: Cabana particle library is built on a Kokkos portability layer

Principal motif: particles

Y4 Y4
CabanaMD ExaMPM Picasso
, : : XGC :
Molecular dynamics Material point Continuum
Plasma PIC :
proxy app L y \method proxy app) Mechanics PIC

-~

Cabana
* Flexible particle data layout

» Performance portable, multi-node particle and particle-grid motifs

J
é )
hypre heFFTe [ ~ MPI | ] - ArborX X
=Yoo -IcM|  Performance portable, Multi-node computation eometric searc
% and solvers y multi-node FFTs

Kokkos
On-node performance portability
[FFTW][chFT rocFFT
i cupA | openmp “ °T'°9"MP | SYCL I
. arget
E‘..SC\P SR




Then (2016) and Now (2023): CoPA

Addressing the challenges for particle-based applications to run on exascale architectures

Cabana: A Co-Designed HPC Library for Particle Applications

| Nips://githudb.com/eCP-CorA/Labane
Lead: Sam Reeve (ORNL), Co-lead: Stuart Slattery (ORNL)
Developers: Christoph Junghans (LANL), Damien Lebrun-Grandie (ORNL), Austin Isner (ORNL), Kwitae Chong
(ORNL), Shane Fogerty (LANL), Aaron Scheinberg (PPPL-consultant), Guangye Chen (LANL), Yuxing Qiu (UCLA),
Yu Fang (UCLA), Stephan Schulz (Jilich), Jim Glosli (LLNL), Evan Weinberg (NVIDIA)

Collaborators: Stan Moore (SNL), Lee Ricketson (LLNL), Steve Rangel (ANL), Adrian Pope (ANL), Mark Stock (HPE)

How we started

* Each particle application defined and implemented separate particle data structures, algorithms, and
communication, even with some significant overlap between domains: Cabana did not exist.

* Each partner application had different strategies for the coming exascale and performance portability (direct
vendor backends for HACC and Kokkos for LAMMPS), but some strategies were unsustainable (multiple sets
of conflicting and complex dependencies for XGC). Finally, the PicassoMPM application did not exist.

Where we are now

Cabana is a full-featured particle library as an extension of Kokkos
* Particle data structures, particle algorithms, and muiti-node particle communication
* Structured grids, grid algorithms, multi-node grid communication, and particle-grid interpolation
* Particle algorithms, load balancing, and 1/O through optional third-party libraries
(Proxy | CabanaMD m ExaMPM m PicassoMPM | (Production
apps) apps)
Cabana
C o I e ) rors

Kokkos

EXASCALE
COMPUTING
PROJECT

ECP

Tier-1 application partner integrations

Cabana provides benefits across many use cases, exemplified by our app partners:

XGC: Direct use of Cabana for migration to performance portability with plans for further algorithm adoption
PicassoMPM: Full use of Cabana for development of a brand new particle-grid application

HACC: Proxy app for rapid exploration of new algorithms and designs alongside production codes (HACCabana)
LAMMPS: Comparison and sharing of algorithms and Kokkos performance strategies

Additional impact
PIC algorithm development using Cabana for rapid prototyping (CabanaPIC)
Sharing of algorithm and performance strategies with the AMReX adaptive mesh refinement library
New non-ECP applications: CabanaPD (ORNL LDRD peridynamics), Hyperion (LANL LDRD multi-physics
hybrid PIC), MRMD (Max Planck multi-resolution MD), PUMI-PIC (RPI PIC), Beatnik (UNM PSAAP Z-model)

Application performance

XGC Waak Scaling - Elctromagnatic DIN-D

8

Tire shup: daralon (econds |
3

=)

o

-
S

8

Cabana benchmarks across all
functionality and runs on all
primary Kokkos backends

oot} ———, _
. t. .'; Left: XGC weak Sud
= “  scaling & speedup © |

o

-

- {

- 2. ma |
216k mash verticesipiane s Right: PicassoMPM {
B4 N rankousiene !

&4 BM parncioa NP1 ramk

o

Crusher single node |
— GPU performance | Illll I ﬁI | |

T P
______ M gred 2300 porticies

0 i= 140k e, 1N porticies
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PET e
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Pl: Sue Mniszewski (LANL)




Then (2016) and Now (2023): ExaAM

Simulated additive manufacturing at the fidelity of the microstructure

Before ExaAM... With ExaAM...

* Overall workflow simply didn’t exist. * Integrated workflow L Ema e
GPU: ExaCA, ExaConstit, PicassoMPM g mr——

* Some components didn’t exist. llebin t bili — =
« Very few could have run on GPU’s. Faiac e canabity

e Part-scale melt po ol simulation intractable Expen mental validation R L B R L D R

* Uncertainty quantification Parallekin-time melt pool simulation technique
Pre-ExaAM Computational Components "
As-built Full-partbu
:J;T:m'e = Code Physics Major limitations microstructure 5 Ros—n:’:::“ ireon simulation
Part-scale Diablo Sofid mechanics, Hest & | Under-resolved procesz model, no pr 1.Powder 2. Sokdification G R synthesis of 4. Macroscale thermo-
Thermo-mechanics (LLNY mass transport, Contact ammaudmum meiting and grain growth R e e e ririade mechanics using lqcally
Aok ool s Truchas (LANL) Heat transfer, Phase change, | Implicit-only integration. No time parallel from microscale properties accurate preperties
pool physics 2cditiveFOAM (ORNL) Fluid flow, Species diffusion | capability. Limited heat source options.
Not acceszible to community (license, export
.__|ALE3D Free-surface flow, Heat =

Powder-resolved meit pool physics 3 control). Simulations took weeks per

o o D e millimeter of lazer track. CPU only.
Grain-scale microstructure = Cellular automata Not fully developed, serial CPU only.
Post-solidification microstructure ;’:"’s’s wl iSuB-_alid CPU only -
Micromechanical properties Abaqus user material Polycrystal plasticity Not scalable, restrictive boensing, CPU only g?ccggvszzcl)?:;w

A e Skl kit Needed additional physics, CPU only i
Sub-grain scale microstructure %MJ ~ ExaCA ExaConstit

E T BT,

{100} {110} {111} ot S T

= ALE3D - high fidelity, powder N p
resolved melt pool Pradcion @ \‘.' ,‘
= No microstructure o
= >100k CPU weeks/mm o r.'nz:) .@ %
w W 9,

Challenge Problem Experimental Comparison

T .’
BPEISSY Experimental
o J'-"' melt pool

.
" SE S

Sﬂnm

’:"\
\ EXFASCH
I COMPUTING
\ ! PROJECT
p\p—

Pl: Matt Bement (ORNL)




Then (2016) and Now (2023): WarpX

Modeling of charged particle beams and accelerators, lab & astro plasmas, fusion devices
WarpX & Spinoffs History & Roadmap Overview of Warp/WarpX

, : Warp and WarpX are multiphysics codes/frameworks for the modeling of charged

::& : :?erz::;::;ﬂi : particle beams and accelerators, lab & astro plasmas, fusion devices & more.

ES = Electrostatic

[ 1D, 20, 3D, RZ |
i
SII Warp| ES-PIC » ES- & EM-PIC

Fortran + Python + MPI = QS = Quasistatic Codes are constructed around the Challenge ECP problem: the modeling of
A-Friedman, ). Grote’; . Haber, et ol ‘s  Farticle-In-Cell (PIC) algorithm: chains of plasma-based particle accelerators
B surfaces for future high-energy physics collider.
; ) o ES- & EM-PIC Cu-callur or fu gh-energy physics ers
§II BPIC| EM-PIC o C++ + MPI + X .
Fortran + MPI (+ optional Python frontend) elec b Sm:cm-reg.;ﬁ;
s S| HiPACE++| Qs-PIC

20212021

L
charged macroparticles

RTEMIS| microelectronics

Python + MPI + Numba
R. Lehe, M. Kirchen, et al.

~

— § ImpactX| ES-PIC, s-based

Warp as of 2016 WarpX as of 2023

large set of advanced, novel algorithms Algorithms Warp advanced algos +new algorithms introduced during ECP
50% Fortran + 50% Python (including programmable frontend) St s Source code: C++17 & optional Python programmable frontend
had grown to large >1M lines of codes w/ varying programming styles compact thanks to C++ templating

CPUs, MPI-parallel Supported hardware CPUs, 3 flavors of GPUs, MPI-parallel
limited Performance optimization extensive

limited support, independently Load balancing & AMR combined native support

compilation from source . standard (CMake) compilation from source
iR Installation : >
some support for binaries one step with Spack/Conda/PyPIl, multi-platform
small team (2+) of computational physicists tightly integrated team of computational physicists + applied
N A Development team A S :

+ individual contributions over several decades mathematicians + computer scientists + software engineers

manual runs of test suite extensive test coverage with continuous integration
. . g : Development A 8 )
partial online documentation, outdated in part policies/practices extensive online documentation
informal code reviews for critical changes formal code reviews for all changes

—_— could perform 3-D modeling of single plasma accelerator stage at - can perform 3-D modeling of chain of tens of plasma accelerator stages
—_— . ECP science case A S R
E (C\' I: moderate resolution at twice the resolution in each direction
].\ J PROJECTT
N

Pl: Jean-Luc Vay (LBNL)




WarpX's “Then and Now" is compelling . . . as it is for every team
Each ECP team’s articulation of this reality will help with adoption, sustainability, evolution

Warp (as of 2016) WarpX (as of 2022) Figure-of-Merit over time

Runs on CPUs
~ 50% Fortran + 50% Python

Many advanced algorithms & physics
Good scaling to ~6000 CPU nodes

No dynamic load balancing

“Home-made”, brittle Mesh refinement
capability

Scaling of I/Os was a bottleneck

Installation required compilation
Manual tests ensured correctness

Modeling of one plasma accelerator
stage at moderate resolution

ELCP ==

Runs on CPUs & 3 vendors of GPUs
100% C++ + optional Python frontend

More & better algorithms & physics

Good scaling to ~150000 CPU nodes,
8000 GPU nodes

Efficient load balancing

Mesh refinement based on robust
AMReX library

Good scaling of 1/Os with ADIOS/HDF5
Easy installation with Spack, Conda, ...

~200 physics benchmarks run
automatically on every code commit

Modeling of 10+ plasma accelerator
stages at high resolution

2O R
o | FHIRONTHER
ol

FOM

Date Code Machine N./Node Nodes

3/19 Warp Cori 0.4e7 6625 2.2e10

3/19 WarpX Cori 0.4e7 6625 1.0ell

6/19 WarpX Summit 2.8e7 1000 7.8ell

9/19 WarpX Summit 2.3e7 2560 6.8ell

1/20  WarpX Summit 2.3e7 2560 1.0el2

2/20 WarpX Summit 2.5e7 4263 1.2el2

6/20 WarpX Summit 2.0e7 4263 1.4el2

7/20 WarpX Summit 2.0e8 4263 2.5el2

3/21 WarpX Summit 2.0e8 4263 2.9el2 ¢
6/21 WarpX Summit 2.0e8 4263 2.7el12 O
7/21 WarpX Perlmutter 2.7e8 960 1.1lel12 O
12/21 WarpX Summit 2.0e8 4263 3.3¢12 LO
4/22 WarpX Perlmutter 4.0e8 928 1.0el2

4/22 WarpX Perlmuttert 4.0e8 928 1.4el2

4/22 WarpX Summit 2.0e8 4263 3.4el2

4/22 WarpX Fugakuf 3.1e6 98304 8.1el2

6/22 WarpX Perlmutter 4.4e8 1088 1.0el2

7/22 WarpX Fugaku 3.1e6 98304 2.2el2

7/22 WarpX Fugakut 3.1e6 152064 9.3el2

7/22 WarpX Frontier 8.1e8 8576 1.1lel3

Computational power increase:

* 500x: Warp (2016) =» WarpX (2022)




WarpX team: Gordon Bell Award Winner at SC22!!

April-duly 2022: WarpX on world’s largest HPCs
L. Fedeli, A. Huebl et al., SC'22, 2022

Movie: D. Pugmire (ORNL)
From WarpX simulation on

4096 Summit nodes
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- Novel hybrid solid-gas target
/ concept

Our simulations demonstrated that the
new concept leads to unprecedented
beam quality using a PW-class laserl, and
are supporting experiments at LOA (Ecole
Polytechnique, France) to validate the new
concept.

it I arm Success story of a multidisciplinary,
@ GENCI p’R"":N . At(gs international multi-institutional team!

ECP =5
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ECP’s EXAALT Application: Methods

* Long times accessed with Accelerated MD
methods (Voter et al.)

— Parallel Trajectory Splicing (Perez et al.)
- TAMMBER (Swinburne et al.)

» Parallelizes in the time domain using
replica-based techniques

 Dynamically accurate to arbitrary precision
(Lelievre et al.)

Number of atoms

18

10

A

Regime of interest

15 to EXAALT

10

12

10

9
10
6

10
10

3

Parallel MD

| |
fs ps ns us ms S ks

» Intermediate size/time regime through combined domaniriepnca UCUUIIIPUSTILTL?FIC%IbeyIIUIIIUIIUUS

sub-lattice, Amar et al.)

PI: Danny Perez (LANL)




ECP’s EXAALT Application:
Computational Capability

Persi D
Tl WErEg s ersistent Database

Master

In-memory cache

 AMD methods implemented through
custom-made task and data management

system In-

memory
cache

Task
Manager

Task
Manager

» Fully asynchronous execution: no blocking/all-
to-all communications

Can be used to implement a variety of complex
workflows:

Kinetic model construction
Machine-learning potentials

PI: Danny Perez (LANL)

Worker

\Y[D)
Engine:
LAMMPS

Quantum
Engine:
LATTE

Worker

MD
Engine:
LAMMPS

Quantum
Engine:
LATTE

Worker

MD
Engine:
LAMMPS

Quantum
Engine:
LATTE

Worker

MD
Engine:
LAMMPS

Quantum
Engine:
LATTE




Then (2016) and Now (2023): EXAALT

Integrated MD simulation environment to access as much Accuracy/Length/Time simulation space as possible

The Evolution of EXAALT: Then and Now

Key Kernel Performance

L T
180F [e-eA100
- l@-e VI 1
160F  a-aMI250X (one dic) -
r A1100 1
< 140 oMl ]
3-120_— -
7100 -
£ 3 |
S 80F -
n -
= 0 ;
40 .
20F -
I ) ) |
Ja|92018 Jan-2020 Jan-2022

SNAP Version

The computational performance of EXAALT is
dominated by the calculation of atomic energies and
force.

A Kokkos implementation was available pre-ECP.
Totally rewritten using different loop structure,
memory access patterns, etc.

25x performance improvement over baseline
implementation coming from code improvements
alone.

Projected FOM at scale on Frontier:
756x speedup vs full Mira

Long-timescale
methodologies

The baseline code implemented the original Parallel
Trajectory Splicing (ParSplice) algorithm.

As part of ECP, we developed a Sub-Lattice
implementation that greatly improves the size-
scaling by introducing an additional level of domain
decomposition, benefiting from the locality of

transitions.
AL Od Ly OTATOeL
I 1
12000013 14115
________________ R0 @
2, 25, B '3y
P |
8 9 110 v
0¢ 0p 1 | dp
|
]

Numerous other methodological improvements for

long-time dynamics:

— Improved Extended Lagrangian algorithm for fast,
SCF-free, dynamics in reactive systems

— Improved speculation procedure for ParSplice

— Demonstrations of the advantages of dynamic
resources allocation in ParSplice

ML for high-accuracy MD

simulations
Entropy Maximized Domain Expertise
Tﬁlnhg Tralnlng
o N B
g v/' |' NN-B, OO0 g
W & _J_A_EWL e L ‘—‘-_‘-_ré

s 2 -1 3 -4 -3 2 -1 0
<) A D) £

e S ——

Domain Expertise Entropy Maximized
IS

Prcbnzdty Derary
.

Evaluation
Prctinzdty Derosy

PR PO Pl O e
Now: Then:
* Globally accurate  « Locally accurate models
models + Limited Transferability

Training process

» Labor intensive training

automated using
EXAALT framework

process

Numerous other methodological improvements for

high-accuracy simulations:

— Spin-polarized, DFTB+U, electronic structure in
LATTE

— Orbital-free charge-equilibration models coupled
with ML potentials

— UQ for ML potentials
— Integrated ML potential development environment

Pl: Danny Perez (LANL)




I ECP’s ExalLearn Co-Design Center: Application Pillars

I Surrogates -I Control -I Design -I Inverse -

 ML-created models

« Faster and/or higher
fidelity models

e Generative networks

« Using ML to replace
complicated physics

« Cosmology

N Pl: Frank Alexander (BNL)

e ML-controlled
experiments

Efficient exploration of
complex space

Reinforcement Learning

Use RL agent to control
light source
experiments

Temperature control for
Block Co-Polymer
(BCP) experiments

~| Agent
slate reward action

s | &, &

R... i
s., | Environment |¢——

Image courtesy Sutton, Barto,
Reinforcement Learning 2017

» ML-created physical
structures

Optimized proposal for
desired behavior of
structure within complex
design space

Graph-Convnets

Use Graph-CNN to

propose new structures
that respect chemistry

Molecular Design

e |
b

1-bond adyl Y \Zzidds 1-remove
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gk STRUCTURE Exalearn
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e ML projection from
observation to original
form

Back-out complex input
structure from observed
data

Regression models

Predicting crystal
structure from light
source imaging

Material structure from
neutron scattering

\w! Qp ‘ Models
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Then (2016) and
Now (2023): ExalLearn

Machine learning for design, control,
inverse problems, surrogates

-
\ EXASCH
\ ! PROJECT
p\p—

SURROGATES (for Cosmology)

Challenges and Importance: Many DOE simulation efforts could benefit from having realistic surrogate modelsin
place of computationally expensive simulations. These can be used to quickly flesh out parameter space, help with
real-time decision making and experimental design, and determine the best areas to perform additional simulations.
We are targeting large-scale structure simulations of the universe. As the field is well developed, the scale can easily
be ramped up to an exascale ML challenge, and the field is robust enough to explore systematics at the sub-percent
level.
THEN . N
Before ExalLeamn, no one had attempted to directly d - ™ i L
create 3D surrogates of n-body cosmological simulations : . -— a . ~ | !
at any scale. Several groups had worked on 2D slices, o ° i._.. g ST RN
: : =
.
1

and there were some nascent efforts that used a
multiscale approach (Perraudin et al., 2019) for GANs -

where 1283 simulations were down-sampled to 323x4, e e — \W
Visually, they looked good. Yet, statistically, they Our MultiGAN approach. ‘ :
produced surrogates lacking the quality needed in Top Right: 1282 slices of the training "V,
cosmological analyses. Training for these effortswas  gata (above) vs. surrogates (below).

limited to single GPUs with 16 GB of RAM.

Bottom Right: Experimental results

/1983 cube | | For4redshifts > comparing physics-informed
; For 4 redshifts spectral loss vs. MultiGAN. Using 16
Random i discr‘ln'ma.tas exceeds the
3D offset > - ~ For 4 redshifts performance of using spectral loss.

!.fi _ Re-bin to 323 cube

/ Re-bin to 64° Starting with (?,128,128,128 4) one combines three scales: 32* + 64° + 128% as:
(2,32,32,32,12) to achieve a 20x reduction in data size to fit on one GPU.
NOW

Using the LBANN code and training on ExaSky Nyx simulations, we solved three challenges posed by using GANs for
these cosmological surrogates. By employing a multi-discriminator, multi-generator approach and using LBANN’s
inherent model and data parallelism, we were able to: 1) mitigate the unstable dynamics, oscillatory behaviors,
scalability, convergence, and mode collapse issues GANs often face in scientific applications; 2) employ the full
machine to train the GANs on Lassen, Perlmutter, and Crusher; and 3) achieve high-quality statistical surrogates for
our n-body cosmological simulations.

Pl: Frank Alexander (BNL)




Can Frontier train the largest Al models (>10'* parameters)?

Service
APIs

Novel
Discoveries

» We are in the quest of demonstrating the

HPC needs for training real world scientific -
Al problems — specifically scientific text and

images.
* Pre-train large language models (LLM) such

O Rive
EgRGy | mi I'l(ﬂ‘) TNHER

0— e e

Large Language
Models

'J".;‘ JEncodipg Ru Vision Language
.

Data and Model Parallelism
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Models
as GPT-3, BLOOM, PALM, LaMDA, Gopher . i . 1 Downstream
and Vision Language models on scientific ROR | -
teXtS ||ke Pmeed, Am|ner, MAG and Internet cloud services OAUTH APIS Graph Databases MuItIiF?ctc?r GPFS/Lustre 2. Ess::g:aﬁon
materials related publication texts e LMDA e GPTS 4 Gopher o Chinchila e PAA o Random 3 Abtad

° Frontier 5((;Ai) Mod. arithmetic gOB? IPA transliterate (55)7 ‘Word unscramble N fD) Persian QA % tinkprediction
~ We believe we train up to 150 Trillion =" = e s /
FP32 Parameter model in Frontier. This ¢ _| 50 ERN| S : Training compute vs.
is approximately ~300X bigger than the =, 2 0l / ; 10! ; ol o jg, Odelsie
largest PaLM model with 540B of Ceee of e OfemestS of é 1023
parameters. 1018 1020 1022 1024 1018 1020 1022 1024 1018 1020 1022 1024 1018 1020 1022 1024 éo 1022
Z
_ Tralnlng some Of these Off the Shelf |arge » fE) Truthful QA (1*;2) f}rounded mappings 7(0(}7) Multi-task NLU 7(;_17) Word in context S 1021
language models could at least take 12 «| o) o) 60| 15 105 1005
. =50 = 50| S50l S 50k- - Model parameters
days on Frontier at HPL parallel S| S0 S0l S|
performance efficiency o] I = =l .
<U [~ o A o I~ QL:) I~
Wei, Jason, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeall.gd, Dani Yogatama et%ll 18 13

"Emge@ﬂifg of large language models." arXiv preprint arXiv:2206.07682 (2022):0 1522 1o 100 102 107 100 1022 102 1020 1022 1024

Model scale (training FLOPs)




BIG for Science?

BEYOND THE IMITATION GAME: QUANTIFY-
ING AND EXTRAPOLATING THE CAPABILITIES
OF LANGUAGE MODELS

Q: What movie does this emoji describe? e

2m: i'’m a fan of the same name, but i’m not sure if it’s a good idea
16m: the movie is a movie about a man who i1s a man who is a man ..
53m: the emoji movie @&«

125m: it’'s a movie about a girl who is a little girl

244m: the emojli movie

422m: the emojli movie

1b: the emoji movie
2b: the emoji movie
4b: the emoji for a baby with a fish in its mouth
8b: the emoji movie

27b: the emoji is a fish
128b: finding nemo

E;\(C\]I: ComeuTG arXiv:2206.04615v1 |cs.CL] 9 Jun 2022




Al for science |
What comes after exascale Al FOR

SCIENCE

e Over 1,300 scientists participated in 4

town halls during the summer/fall of 2019 RICK STEVENS
o VALERIE TAYLOR
¢ ReseOl’Ch OppOI’TUI’]ITIeS N Al Argonne National Laboratory

July 22-23, 2019

- Biology, chemistry, materials,
| JEFF NICHOLS
- Climate, physics, energy, cosmology : ARTHUR BARNEY MACCABE
@ Oak Ridge National Laboratory S

August 21-23, 2019

- Mathematics and foundations
KATHY YELICK

- Data life cycle # " DAVID BROWN
. SN Lawrence Berkeley
— SOﬂ-WOre |nfrOSTrUCTure W MNational Laboratory

September 11-12, 2019

- Hardware for Al

- Integration with scientific facilities
 Modeled after the Exascale Series in 2007
« ASCAC subcommittee report Sept. 2020

OAK RIDGE

National Laboratory




ANL-22/91

: L4 . . . e
.. Leadership Al aimed at mission needs
.— Scientific discovery, user facilities, energy research, environment
and national security
SREERISECt A L levant DOE asset
329 o everages reievan daSSets
® AIFORSCIENCE, | /. . 8

ENERGY, AND . ! *Exascale class computing

% SECURITY S :
"z 02 9, B8 *Exascale class data infrastructure

Report on Summer 2022 Workshops ) AN v o L vewsr | LN I_I..'-I\
Sohatha Carid) ¥ i, . Large-scale Experimental Facilities " »
Lawrence Berkeley National l.aboratory - \

- 4 o‘. . . o o o afo, o
B setiems S A Large-scale Scientific Simulation Capabilities
Sandia National Laboratories s J ! ) ’ . . . . . ‘
DBl Kothe g /5. AT AA e *Interdisciplinary teams | Pl
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Then

2016) and Now (2023): ExaSGD

Optimization for the modern electric power grid

State of the Art in Power Grid Optimization: Then

ExaGO: Did not exist
HiOp: Built for specialized structural engineering systems (dense systems only on CPU)

Algorithms: Optimization for power grid dominated by approximations because of compute platform constraints

* DC approximations used even though power grid is AC

* Security constraints applied “after the fact”

* Contingencies and scenarios limited to most likely or most worrisome (leaving huge “blind spot” for operations)
* Rapid prototyping of new methods for new platforms constrained by legacy tools

Penetration of Renewables: Renewables introduce instability into system that make old approximations worse

*  Grid systems respond to demand which is coupled with uncertain weather

* Inability to sample large range of possible weather futures means we are vulnerable to extreme weather events
(TX ice storm 2021, polar vortex 2022, etc...)

Software Environment: Code was run “on laptops” so no push for HPC
* Code doesn’t natively run on accelerators, so “good enough™ on low end systems was accepted

FY20

Fy21 Texas

Western
Interconnect

FY22

Western

FY23
Interconnect

ECP

EXASCALE
COMPUTING
PROJECT

PI: Chris Oehmen (PNNL)

State of the Art in Power Grid Optimization: Now

ExaGO: multiple stable full stack software releases
HiOp: General purpose, portable optimization engine (includes mixed dense/sparse and sparse solvers)

Algorithms: New implementations take advantage of increased memory, compute power on a single rank making it

possible to capture important realism

* High fidelity AC physics included—more accurate model leads to efficiency gains and better situational
awareness

* Security constraints applied inside optimization loop means compliance with regulations is built into the
solution- optimal solutions are chosen with security baked in

* Accelerator based implementation and HPC engine allow for vastly larger number of contingencies and scenarios
to be explored—better awareness leads to better national readiness

* Portability built into ExaSGD code enables rapid prototyping of new methods and platforms—flexibility ensures
ExaGO is innovative and impactful to industry

Penetration of Renewables: better representation of weather effects improves grid management especially as

renewables penetrate deeper

* Stochastic variability is enabled by Exascale computing which allows for
weather scenarios which influence generation in different ways

* Accounting for more possible renewable generation profiles leads to more stable operation

pling of a large ber of possible

Wind power variability

e 10 wind power scenarios aggregated over the ACTIVSg70k test system enabled by
ExaGO. We highlight the scenario with a significant drop in wind generation
(~2GW in 40 min which iz far outside chenges expected from tional inertia-
baszed generation), and remark that AC power flow physics will enable planners
to better understand the effects of significant variability in renewable generation
on large power systems.

Software Environment:

* Optimization, linear solver and domain model code all running on accelerators enables rapid time to solution for
power grid models- enables calculations the size of Western Interconnect and larger on single node systems

* Portable software stack running on Exascale systems enables optimization over thousands of weather scenarios
and for highly complex contingencies (i.e. loss of multiple power grid elements simultaneously)—enables
evaluation of complex damage “what if's” like hurricane or cyber attack
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Voltage and Reactive Power Event (AC

Effects Matter!)
Voltage and reactive power event on ACTIVSg2000 test system coused
by broken transmission lines during a hurricane strike.

Hurricane Dolly and Renewables

Path of the eye of Hurricane Dolly (blue), and the effecton
power generation from 3 wind farms. Timeseries generation
data used as input for AC optimel power flow computations.




Then (2016) and Now (2023): ExaBiome

Microbiome analysis

Microbiomes are Critical to Energy and the Environment
— -

Exabiome Exascale Challenge

e Microbes: single cell organisms, such as bacteria and viruses

e Microbiomes: communities of 1000s of microbial species, less than 1% individually Distributed Implementations Panaliclism Motifs
culturable in a lab (and thus sequenced) ® MetaHipMer e PASTES ‘ o Hash tables e Generalized N-body
" 2 2aa » . o dIBELLAJELBA o GOTTCHA2 e Sorting e Sparse matrices |
L ¢ Metagenomics: genome sequencing on these communities (growing exponentially) pae o HipMCL g g o Graph e alignment ;)

Large-Scale Metagenome Assembly with MetaHipMer

MetaHipMer “then" (at the " CHINANR @ CATR 8 T U 4 ot Scafing with input sata  MetaHipMer "now™ Future Directions and
- sire. Multiple dotasets
start of ECP) are represented and Challenges
2 dataset compasRion e Production quality code used extensively by the JGI for client assemblies
MezaHipMer had just been written as an ¢ R Ty, 13 mamnm::« mﬁ':ouammﬁmue o Worh o s G mesmibsly
modfication of the single genome assembler, f I P : 5 Wlmmﬂ:;udu mmmmmm' pipeline to GPUs for increased
"m;"n“‘m"“‘;emmm:dux ol |, N 1 1o the tronsition to ® Many algorithmic improvements, e.g. implementation of a new scaffolding ::::ldewt:e iy of
:ndthe- W:"‘;em ::svi?not:t .. UPCe+ and algorithmic WWﬂnxmaMmmmm - d:”e"'bm
quality assem »l A improvements. sing| stage. MetaHioht
equivalent to that produced by existing . ':‘ ) .:‘ e Improved data locality, e.g minimizers (simiar to locality sensitive hashing) % 2 for shgle
m:mut:t;:::uumma:‘ﬁew ' : combined with recrdering of input data reduced communication volumes by sssomibly § f 8 e
stage peline S

- Assembly rate in bytes the old HipMer code base,

t’n‘-‘:onast-dt.-"“’ m.mdhr::emmmm : per second over the * Support for GPUs in several stages, requiring new algorithms. s 'M;Bn’m'“”*
required a high-memory . 3 course of the preject. On~ ® A big surprise was up to 7x speedup for some stages on GPUs - we initially e dshiier)
h?’“;‘;’;mﬁmsucmmt ks the same rumber of believed that the asynchronous, random access nature of the code would almrftimic b 255
nodes in Ma. node hours, < . nodes, the speedup from make it hard to exploit GPUs.
and larger runs were not possible because of : . 2016 to 2021 is over e Large impact: went from a low quality assembly of perhaps 178 to 2 high tnu.detmd”md'::u':‘bes:m"e.‘
the memory constraints of single nodes. } '|||||| II || I m“”"ﬁ::’:{"“ quality assembly of over 30TB (and our target & SOTB). Code performance pom e
I aRE e e SRR s : T Wmmwwc" improved by a couple of orders of magnitude over the course of the project scaffold € o

\" \
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Then (2016) and Now (2023): Energy Exascale Earth System Model

Cloud-resolving Climate Modeling of the Earth’s Water Cycle
_ Then

Baseline model (non-MMF) Performance at Cloud Resolving resolution MMF Cloud Resolving Capability
* E3SM v0 = CESM 1.2 (branch point of the E3SM project)

- . . « Performance of E3SM v0 with the atmosphere running at 3 km * Promising research results using MMF in CESM
High resoluuorl configuration: 25 km atmosphere, 10 km ocean (cloud resolving) resolution, using all of Titan  Not integrated into E35M
* GPU acceleration: None « E3SM had never run at 3 km resolution and so performance
* Hydrostatic (no nonhydrostatic capability) was estimated based on 25 km atmosphere
* 25 km model running at 1.5 SYPD on Titan (CPU only) « Performance extrapolated to all of Titan, assuming perfect
. R weak scaling, 20% coupler overhead, ocean concurrent with
N other components:
+ Max(atm_timesice_time, ocn_time) * 1.2
H '5:)- . "'\_ * Figure of Merit (FOM) = 0.11 Simulated Years Per Day on all of
‘ i NN Titan 3
H i N
.‘ “-\‘ - - -
| THEN: Figure of Merit (FOM): 0.011 Simulated Years Per Day

pras— ) " Comy > -
Coupled model performance Strong scaling of atmosphere, ocean and sea ice

Now

Baseline model (non-MMF) E3SM-MMF Fully coupled model running on Summit
. * MMF fully integrated into E3SM with many science and Rosalving Atmesphen

* SCREAM: E3SM’s 3 km cloud resolving atmosphere model algorithmic improvements, and dramatically improved I/O Flod o ! < « Strong scaling of E3SM-MMF atmosphere
« Rewritten from scratch, led by E3SM with many contributions performance via SCORPIO + ADIOS o' component vs baseline model on Summit

from ECP E3SM-MMF project « KPP Challenge problem running on Summit * Red curves: 75 km benchmark problem,
+ Nonhydrostatic dycore with HEVI-IMEX « Weather resolving atmosphere (25 km) coupled with cloud s ﬁg’gf&” EEEISaCon e
« Atmosphere with prescribed SST simulations running on all of resolving convection and turbulence ( 1 km) . e

L vIt ) g . .
Summit (obtaining 0.43 SYPD) on 4600 nodes. « Coupled to the MPAS Ocean/Ice components running on the = nee p

running on GPUs — should scale to all of
Summit

+ Purple: Baseline model running on GPUs

18to6 km (Eddy Resolving) mesh

+ E3SM-MMF “AMIP” simulations.
E3S simulations * Running at 2.03 SYPD

* CPU node vs 6 GPUs:

i, ~ w/ 3D CRM: excellent GPU I * MMF approach achieves many aspects of
F; speedup (>20x) and scaling — - a doud resolving model and is far more
3 ] " efficient than the full doud resolving
i, — w/ 2D CRM: 9x CRM speedup B -~ NORER baseline approach
+ Baseline GCRM projection .
Fuwo Node comparison: 2xP9 vs 6xV100
H - Based on dycore GPU - - v
performance JE :
* E3SM-MMF sigpiﬁcanﬂy faster . . . .
S o et e S Figure of Merit (FOM): 2.0 SYPD on Summit ( 181x FOM improvement)

KPP Challenge problem: Need to achieve 2.6 SYPD on Frontier

PI: Mark Taylor (SNL)




Then (2016) and Now (2023):
EQSIM

End-to-end simulation of earthquake phenomena

The EQSIM project is developing and implementing an advanced simulation
framework that will exploit emerging exascale level computing and establish
a coupled assessment of earthquake hazard (ground motions)
and earthquake risk (infrastructure demands).

Regional-scale 3D

Ground
motion
simulation

Coupled
building
response
simulation

Evolution of bullding damage ————»

High Performance

A principal objective of EQSIM is to
substantially improve the fidelity of regional
earthquake simulations to resolve
frequencies necessary to evaluate the
response of engineered systems (e.g. up to
10Hz), and also to adequately resolve the
response of near-surface soft soils. Both
these objectives create unprecedented
computational demands.

Fault-to-Structure Simulations

Advancements in SFBA Simulations

o Advancements in Computer Platforms g o
10 g . , . . 3 1 =se-a--uuo a1 s
US DOE Frontier Aagaard2008 max=10He ———> @
£ 407 Tomulight ¥ o g ;}m - @ Larsan2008 7 10
£ r E Lad Fugatu | ® Potorsson2008 2
2 10" Tk 24— L 008 31 ® Harmsend2008A £ 4o “Then" °
2 r US DOE L] - 1 ig : ; aard2010 % e v:mmn.z,o::'
AL G i | 25| 3EER | Ll mreaTeren TR
US DOE — - »
T o o B L >e®® ] 2 $ danio é ' f e \_|e
’8‘ 10" Earth Simwtator > ®O® 5oy o Top 500 Vst at topS00.ery v|4 1.0
B ’ I THE £ I
£ ygu | Teariop ,;..:_'w { &§||8 3w
10" 00, , AR " " . 52 < § 10' [ z
1990 1995 2000 2005 2010 2015 2020 2025 o * vl ® 3 'L
= ':/:9'99 zoloa I I | zo|z1
2014
1999 — 2023 Vsmin = 1000 mis o A
", ”
SFBA EQSIM model “Then” SFBA EQSIM model SFBA ENQ‘;'I‘P,I model
The EQSIM  _ Fmax = 1 Hz s Fmax = 2 Hz s Fmax =10 Hz
development 'E 5: T v i € Ty § N —
hasincreased ¢ 4: e 1 gd
the SFBA 3 2! g2 1 §2
simulation oL Mﬁ"ﬁ‘rnlu\ll"lfu'\."/w’\:w % o —'\" w.""tﬁ.'v'.wvwwm g0 UM
frequency 2 g2 i 8=
resolutionto T 4 PGA=1.03m/s T4t PGA=32Tmis | I =« PGA=5.03 m/s
1 : -
Fmax = 10Hz 2 & . 2% tidisad PO S 7 || RN TOUOT SO VOV POV PO VTR OO
© 5 10 15 20 25 30 35 40 45 O 5 10 15 20 25 30 35 40 45 5 10 15 20 25 30 35 40 45
Time (sec) Time (sec) Time (sec)
“Then” “Now”
USGS SFBA geologic SFBA EQSIM model SFBA EQSIM model
model Vsmin Vsmin = 500 m/s Vsmin = 140 m/s
The EQSIM
development has
increased the
SFBA simulation
resolution of soft
near-surface

sediments to
Vsmin = 140 m/s

PI: David MacCallen (LBNL)




Then (2016) and Now (2023): CLOVER

Preparing linear algebra and FFT for exascale

THEN: ScalLAPACK

First released in 1995, ScalL APACK is a Fortran 77 library providing dense linear algebra routines for
distributed memory machines. While very successful, ScaLAPACK has many limitations in a modern

environment:

Cumbersome interfaces with numerous arguments; no C/C++ bindings.
No multi-threaded CPU execution — typically 1 MPI rank per core.

No GPU acceleration.

No overlap of computation and communication (e.g., no lookahead).

No communication avoiding routines.

ScalLAPACK on 16 nodes of Crusher (CPU only)

25
el ———— o
20{ ™~ 2
-
_c."— e e e P S -
_§===""
15 1 Cad
é_ ;’ j’."
&= &
F 10 F,j?
4’, -~ matrix multiply (dgemm)
51 ¥ ~-@ - Cholesky (dpotrf)
=¥~ QR (dgeqrf)
0 T v v v v v
50k 100k 150k 200k 250k 300k

Matrix Dimension

NOW: SLATE

SLATE is a modern C++ library providing common linear algebra routines for distributed,
GPU-accelerated machines.
e Covers ScalLAPACK functionality including BLAS (matrix multiplication, triangular solves), linear
system solvers, least squares solvers, eigenvalue and singular value decompositions.
BLAS++ and LAPACK++ portability layer across GPU architectures (CUDA, ROCm, oneAPI).
e OpenMP tasking to overlap communication and computation.
e Adds new algorithms including mixed-precision solvers and communication-avoiding
algorithms: CAQR, CALU, 2-stage eigenvalue and SVD.

SLATE on 16 nodes of Crusher (4 MI250X GPUs/node)

2000

—@— matrix multiply (dgemm)

®— Cholesky (dpotrf) /._,..—-I
1500 1 —— QR (dgeqrf)
~- - ScalAPACK dgemm (CPU only)

0 100k 200k 300k 400k 500k 600k

Matrix Dimension
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Then (2016) and Now (2023): CLOVER

Preparing linear algebra and FFT for exascale

heFFTe
THEN NOW

e The fast Fourier transform (FFT) | uans || wanex || mace || comom || comn || oamr | e GPUs (e.g., V100 on Summit) Raaam e e e
is used in many domain applications - GPU
more than a dozen ECP applications
use FFTs in their codes;

e State-of-the-art libraries like FFTW
were no longer actively developed
for emerging platforms;

e No GPU support for distributed
multi-dimensional FFTs at the time;

e Some ECP application constructed

= accelerate local FFT compu-
Hntarogenomlz. e heFFTe supports multiple
backends for Nvidia GPUs,
AMD GPUs, Intel GPUs and
multicore CPUs;
e Novel features such as

Batched 2-D and 3-D FFTs
e Support FFT convolution, St{)ong scalability on 1024° FFT (Leagt) and weak scalability (Right)

Accelerate

AN

[
Vv
local operations
using GPUs
43 x

their own FFTs directly in applications, sine, and cosine transforms; # = i
e.g., fitMPI for LAMMPS and csie Aa2aze \ e Support forreal and complex ., WhesrTe 6PV} P Werrreiav)
SWFFT for HACC; ] ;3%?23 FFTs, multiple precisions -3 onareTaiciu) 5, oy | A6 J
e Features and application-specific ;}; 1 e, and approximate FFT;
needs were not supported uniformly; |, /] 1 ;‘5:':.:; e Very good strong and weak
e The goal was to leverage the existing ' " scalability (Figure on right); e s b i R T R
FFT capabilities and build a e : » e FFT benchmark for MPI Number of Sumemit nodes Number of Summit nodes
sustainable FFT library for Exascale. - collectives and other FFT libranes.
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Pl: Hartwig Anzt (UTK)




Then (2016) and Now (2023): CLOVER

Preparing linear algebra and FFT for exascale

Ginkgo
THEN

MAGMA-sparse as experimental code for ~ MAGMA SPARSE
the development of sparse linear algebra for ROUTINES glscs?'csn:%ssss'fghBlln“k;"“y"?mousa Jfagtghgc.
NVIDIA GPUs serves as starting point and f TFOM ' '

LSQR, QMR, TFOMR
refereme for the deve'opmnt of GianO. PRECONDITIONERS ILU /IC, Jacobi, ParlLU, ParlLUT, Block Jacobi, ISA)
KERNELS SpMV, SpMM

DATAFORMATS CSR, ELL, SELL-P, CSR5, HYB

Before the first line of code hits the
repository, a complete year is spent with

whiteboard discussions on the design. e s g
. 150,000
Ginkgo's development embraces: 3
e Platform Portability < 100,000
e Performance g
e xSDK Community Policies = 50,000
e Modem C++
e CI/CD and unit testing 0
- - - 2018 2019 2020 2021 2022 2023
e Open source & permissive licensing Year
e Rapid integration of new algorithms

NOW

Library core contains
architecture-agnostic

factionality

CORE
Infrastructure
Algorithms

= Iterative Solvers
= Preconditioners

Runtime polymorphism selects the right
kernel depending on the target architecture

REFERENCE

Unit lt SLs

CI cOo

Production-ready modern C++ linear algebra library for

OpenMP

Architecture-optimized kemels

CUDA
«ZINVIDIA

&= Ginkgo

HIP
AMD1

DPC++

intel

h@* -I Q-iBMJ q-a—-—J -sam-'

single-node and multi-node execution with native support for

GPU architectures from AMD, Intel, and NVIDIA.

Procanditianars  Krylaw salvers

Sparsediect  AMG Datched

Utilities

(Each-Maconi

une

Paralel NG
Paralel RUTIET
SO0 Approaieate Weerse
Bached BCOSTAR
Aahed C6

Bynched GNRES
Aavhed Ll

Bached S8

Basched Jacebi

AMG precarcitorer
AMG sower

Paralel Gragh Manch
Symdebc Cholesdy
Wurveric Chelesiey
Symaebc LU

Furveric LU

Sparse TRSY
Or-Davice Matrin Assavebdy
MOALIRTM reondering
Wrapping user data
Logyeg

PAF cannters

g

TR LR
B I T )

L L O BB B

L O

QW AN S

>

~

L LG eI LG GGG LG LD G D G RERE R
z

ﬁl‘.lll..ll!l‘g

L L

[= x‘ SCHAL
MPUTING
F‘»—«r_jl: T

E (C\F’

Pl: Hartwig Anzt (UTK)




ST’s Extreme-scale Scientific Software Stack (E4S)

Is a key ECP product to sustain and evolve

 E4S: HPC software ecosystem — a curated software portfolio

» A Spack-based distribution of software tested for interoperability
and portability to multiple architectures

* Available from source, containers, cloud, binary caches

» Leverages and enhances SDK interoperability thrust

e Not a commercial product — an open resource for all

» Growing functionality: November 2022: E4S 22.11 — 100+ full release products

Portfolio testing\

Especially leadership
platforms

DocPortal
Single portal to all

E4S product info

Community Policies
Commitment to SW quality

Curated collection Quarterly releases 10 %%Ll(dbﬁacfit‘nees
The end of dependency hell Release 22.2 — February A .
improvement
Turnkey stack . : % Post-ECP Strategy
A new user experience https://eds.io | LSSw, ASCR Task For(y

hittps://eds.i0 ¥

E4S lead: Sameer Shende (U Oregon)

Also includes other products, e.g.,
Al: PyTorch, TensorFlow, Horovod
Co-Design: AMReX, Cabana, MFEM



https://e4s.io/
https://spack.io/
https://e4s.io/

ECP: Key Takeaways

The Exascale Computing Project (ECP) is not just about developing and demonstrating the ability of new and
enhanced DOE mission critical applications to tackle currently unsolvable problems of National interest . . . but
we also are building and deploying a new Extreme Scale Scientific Software Stack (E4S — e4s.io) that
greatly lowers the barrier to adoption of new technologies and to porting on advanced hardware. We are building
a scientific software ecosystem for decades to come that is present and supports scientific computing from
laptops to desktops to clusters to leadership systems

The fundamental tenant of ECP is not about building boutique applications and a software ecosystem that can
only execute on the Nation’s largest systems, but it is about accelerated node computing, namely designing,
implementing, delivering, and deploying advanced agile software that effectively exploits
heterogeneous node hardware on today and tomorrow’s laptops and desktops

We view accelerators as any compute hardware specifically designed to accelerate certain mathematical
operations (typically with floating point numbers) that are typical outcomes of popular and commonly used
algorithms. We often use the term GPUs synonymously with accelerators.

Compute hardware, from laptop to the largest systems in the world (e.g., ORNL's Summit system), are made up
of accelerated nodes. Accelerated-node computing is here to stay

— Accelerators today: GPUs Tomorrow: better GPUs or FPGAs or other ASICs? Near future: quantum?

ECP’s first-mover applications & E4S software stack are available for testing (even on laptops) and have
greatly demystified and lowered the barrier to productive utilization of heterogeneous accelerated-node
hardware.

ECP ===




Retrospective

The US Department of Energy (DOE) has been a leader in High Performance Computing and "invented” it for the
purposes of “design predictability” 80 years ago. Lots of lessons learned and ROI evidence to share. ©

Development and application of advanced, predictive modeling and simulation (M&S) — both
computational and data science — has long been a mainstay and critical crosscutting technology for the
DOE and its National Laboratories (17 of them!) in achieving its mission goals in science, technology, and national
security. This has never been more vibrant and foundational than today.

Accelerated compute performance (FLOPS, memory, memory B/W, etc.) and enhanced physical models,
numerical algorithms, and software architecture enabled by this performance directly correlate with more
predictive M&S tools, technologies, outcomes, impact. This does not come without difficulties, challenges,
pain, and perseverance: from GF to TF to PF to EF. We celebrate these milestones - each one comes with
“tipping points” that are disruptive for app and software stack development yet accompanied by (often
unanticipated) high ROI

The EF “exascale era” (>10'8 floating operations / sec) is upon us, and many institutions and agencies
have been preparing and investing for this milestone for over a decade: DOE included!

DOE’s Exascale Computing Initiative (ECI), of which the Exascale Computing Project (ECP) is a part, was initiated
almost six years ago and is poised and ready to demonstrate the tremendous “science return” of this
technology
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For more info / . -
» Alexander F. et al. Exascale i@ations: Skin in the Game, Phil. Trans. R. Soc. A
378: 20190056 (2020) (http://dx.dai.org/10.1098/rsta.2019.0056).

» Douglas Kothe, Stephen Lee, and Irene Qualters, Exascale Computing in the United
States, Computing in Science and Engineering 21(1), 17-29 (2019).
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