
Enabling AI & HPC to be open, safe and accessible to all

Building the Foundations for the Next
Generation of High-Performance Software

February 2023

Andrew Richards, CEO, Codeplay
Multicore World, Wellington, February 2023

© 2023 Codeplay Software Ltd2

Codeplay

• A compiler company, founded in 2002

• Based in Edinburgh, Scotland

• Specialise in compilers for accelerator processors (e.g. GPUs)

• Acquired by Intel in 2022 and continuing as a subsidiary

© 2023 Codeplay Software Ltd3

• I was a videogame developer

• In the early days of videogames
(8&16-bit), we were using
processors from much older
business systems

• We had years to squeeze the most
out of older processors

Who am I?

© 2023 Codeplay Software Ltd4

• In the 90s, people discovered you could write a game on a PC,
doing new things never before possible, which would run
super-slow and be unplayable

• But, by the time your game was released, there were new
processors that would run it fast enough

• People could plug in new devices like GPUs to their PC

• By the end of the 90s, videogames and PCs were the driving
force of innovation of the tech industry

What changed?

© 2023 Codeplay Software Ltd5

I decided:

• I wanted to be part of driving new ideas
in tech

• Writing software on today’s hardware
and running it on tomorrow’s hardware
was the way to do this

• This requires compilers

Why did I start Codeplay?

© 2023 Codeplay Software Ltd6

What is a compiler?

• What does it do?
• A compiler takes computer source code (written by a programmer) and turns it

into instructions that a processor can execute

• What is a compiler for?
• A compiler enables programmers to write code that does what the user wants

➢What a compiler does is the opposite of what it’s for

© 2023 Codeplay Software Ltd7

Enabling people to build software:
the “ecosystem”
• Much larger teams of people with variety of skills

• Showing people how to write source code: training

• Working out how to target a variety of different machines

• Integrating with other software

• Standardizing the language to enable people to write once & use many compilers

• Working out the intellectual property rules with lawyers

• If we don’t do this work, then our compiler doesn’t serve its purpose

Building compilers
• Small team of specialist compiler developers

• Convert source code to machine code

© 2023 Codeplay Software Ltd8

What is an accelerator processor?

• Early computers did everything with a CPU
• My ZX81 had to share time between running my program and driving the TV

• Then computers added special hardware to do very specific
things like graphics and sound
• Early videogames had “Sprites” and “Scrolling backgrounds”

• If you wanted to do anything else you had to use the CPU: this was limiting

• But by the early 2000s, the graphics processors (GPUs) had
become fully-programmable
• This enable videogames designers to do incredible new things in graphics

© 2023 Codeplay Software Ltd9

CPUs and Accelerators

CPU
Accelerator
Processor

© 2023 Codeplay Software Ltd10

CPUs

• Great at latency-
sensitive tasks (reacting
quickly)

• Huge, well-developed
ecosystem

GPUs

• Great at graphics

• Great at processing lots
of floating-point data

• Huge, well-developed
ecosystem for graphics

• Single-vendor
ecosystem for non-
graphics data-intensive
applications

Other Processors

• Great at specific tasks

• Much longer time-to-
market,

• No open ecosystem for
software

• Struggled to keep up
with new innovations
(e.g. AI)

CPUs to GPUs to more general accelerators

© 2023 Codeplay Software Ltd11

Accelerators give the
performance we need for

future software
innovations

If we don’t enable an
accelerator ecosystem, we
provide the performance

but not the software
innovations

The Opportunity vs the Challenge

© 2023 Codeplay Software Ltd12

• Block innovations in AI by
making it very hard to design
new operations

• Very hard to integrate with
more complex software

• Low customer adoption

Closed AI graph
compilers

• Block innovations in
accelerator hardware

• Only works for software that
maps well to specific
hardware

• Hard to move software
between processors to get
best performance

Single-device
programming
models

• Blocks progress to
accelerator-based systems

• Lack of performance means
lack of software progress

CPU-only
programming
models

The challenge today: Closed systems

© 2023 Codeplay Software Ltd13

• We know the technology answers
• There isn’t one solution for everyone, so we need to integrate the best-in-class

technology solutions into one ecosystem-ready integrated solution

• We know the organizational answers
• We know that industry standards and open-source projects can deliver

ecosystem-friendly, innovator-friendly platforms for innovation

The solutions

© 2023 Codeplay Software Ltd14

• My laptop stores its data on the C drive
• The A and B drives disappeared multiple decades ago

• Success for hardware ecosystems comes over decades
• Software takes a long time to develop

• oneAPI, SYCL, SPIR-V are designed for very long term support
• Long term backwards compatibility

We are building the software approach for decades to come

Platforms: long-term compatibility

© 2023 Codeplay Software Ltd15

• For each component we need, we are striving to choose the
best-in-class industry standard approaches

Best-in-class components

© 2023 Codeplay Software Ltd16

How CPU compilers work

• We transform a language
into an intermediate
representation which
contains a simplified
representation of our
code

• We do this because it’s
much easier to transform
an IR with passesHardware

Compiler back-
end

Intermediate
Representation

(‘IR’)

Language (e.g.
C++)

Compiler
front-end

Optimization
passes

Code
generation

CPU ISA

© 2023 Codeplay Software Ltd17

Hardware

Compiler back-end

Intermediate
Representation

(‘IR’)

Language (e.g.
C++)

Compiler
front-end

Optimization
passes

CPU code
generation

CPU ISA

Data flow
analysis

Runtime:
DMA/sync

Accelerator
code

generation

Accelerator
ISA

How heterogeneous compilers work

• We now need to create
code for 2 (or more)
processors
• 2+ compiler back-ends

• And we also need to
transfer data and
synchronize
• We have a runtime

© 2023 Codeplay Software Ltd18

Hardware

Compiler back-end

Intermediate
Representation

(‘IR’)

Language (e.g.
C++)

Compiler
front-end

Optimization
passes

CPU code
generation

CPU ISA

Data flow
analysis

Runtime:
DMA/sync

Accelerator
code

generation

Accelerator
ISA

We interface to hardware ISA via SPIR-V

• SPIR-V is the standard
intermediate
representation to interface
the accelerator-specific ISA
from the higher-level
compiler stack

© 2023 Codeplay Software Ltd19

• MLIR lets us do different
optimizations at
different levels

• Enables optimizations
for different hardware

• We’re adding MLIR
support to enable a
wider range of compiler
optimizations in the
stack

Multi-Level Intermediate Representation (MLIR)

Hardware

Compiler back-
end

Low-level IR

High level IR

Language (e.g.
C++)

Compiler
front-end

High level
optimization

passes

CPU
optimization

passes

Code
generation

CPU ISA

Data flow
optimizations

Scheduler

Runtime:
DMA/sync

Accelerator
optimization

passes

Code
generation

ISA #2

© 2023 Codeplay Software Ltd20

• SYCL is a royalty-free vendor-neutral industry standard C++ for
parallel software and accelerator processors

• SYCL takes proven C++ performance ideas & super-charges them
for a heterogeneous processing world

• Now we can:
• Build our own C++ SYCL compilers for a variety of new processors

• We can design our own optimizations

• We can build C++ libraries that can adapt to the performance requirements of
lots of different systems

• We can integrate native compilation for different processors in one source file

The C++ approach: SYCL

© 2023 Codeplay Software Ltd21

cgh.parallel_for<class parallel_demo> (

cl::sycl::range<1>(n),

[=](cl::sycl::item<1> i)

{

out [i] = f (in [i]);

});

• By default, a SYCL parallel_for
can run entirely parallel

• We define a range to execute in
parallel over

• We use a C++ lambda to define the
loop body as that’s standard now

• It is the job of the programmer to
ensure ‘f’ is safe to run in parallel

• The loop is enqueued and run
asynchronously to the CPU thread

• The parallel loop can execute on any
SYCL supported core: CPU, GPU, FPGA,
DSP, anything programmable

How SYCL handles parallelism

For more complex parallelism where
there are scheduling dependencies,
there are a range of options: SYCL

requires you to specify where your code
isn’t parallel

© 2023 Codeplay Software Ltd22

auto in = inp.get_access<cl::sycl::access::mode::read>(cgh);

auto out = outp.get_access<cl::sycl::access::mode::read_write>(cgh);

cgh.parallel_for<class parallel_demo> (

cl::sycl::range<1>(n),

[=](cl::sycl::item<1> i)

{

out [i] = f (in [i]);

});

Performance on accelerators is more about data access than compute:

• GPUs have on-board HBM memory and a small amount of fast on-chip SRAM

• DSPs use DMA to transfer data rapidly to a larger amount of on-chip SRAM

• AI accelerators usually have a lot of fast on-chip SRAM

SYCL requires developer specify how to access data: which may enable maximum performance

How SYCL handles data access
Access mode
specified

© 2023 Codeplay Software Ltd23

gpu_queue.submit([&](cl::sycl::handler &cgh) {

auto in = inp.get_access<cl::sycl::access::mode::read>(cgh);

auto out = outp.get_access<cl::sycl::access::mode::read_write>(cgh);

cgh.parallel_for<class parallel_demo> (

cl::sycl::range<1>(n),

[=](cl::sycl::item<1> i)

{

out [i] = f (in [i]);

});

});

• Both host & device code are compiled via C++ native compilers
• When SYCL goes through OpenCL, it can (optionally) use SPIR-V as the compiler IR

➢ But it’s still C++ source compiled to native device ISA

• SYCL device compilers can have per-device extensions
• More than one device compiler can compile a single source file

How SYCL handles multiple, different, processors

SYCL Device Compiler extracts this
kernel and compiles it natively for
accelerator processors

Compiled for CPU
by any normal
CPU C++ compiler
& runs
asynchronously on
host CPU to
enqueue kernels to
accelerator

This kernel ‘name’
allows multiple C++
compilers to be
stitched together

Combines the
benefits of chosen
CPU compiler and

chosen device
compiler

© 2023 Codeplay Software Ltd24

• Most vector instructions and memory models map to SYCL2020 today

• New instructions or memory systems can be mapped to SYCL
extensions – there’s a clear mechanism for this

• Then, these processor-specific performance features are integrated
into the template libraries in an appropriate place
➢The aim is to enable processor-specific optimizations in the least disruptive way possible

➢Enables us to run the same software with high performance on lots of different processors

How SYCL handles processor-specific
optimizations

© 2023 Codeplay Software Ltd25

Building it
• SYCL started as a Codeplay project

• We worked with collaborators to build out an ecosystem for C++ on
accelerators

• SYCL is now led by all the people who join
• SYCL became the product of experts in their field coming together

• oneAPI started as an Intel project
• We will work with collaborators to build out an even wider ecosystem: more

languages, more libraries, more tools
• oneAPI will now be led by all the people who join
• oneAPI will now become an open-source project
• We will bring together hardware and software innovators to build out a truly

open industry-wide ecosystem for accelerator hardware and software

© 2023 Codeplay Software Ltd26

Building it together

• In 2023 we are moving oneAPI into a new open organization

• oneAPI is being structured as a constantly-evolving open-source
project

• We enable a wide range of hardware and that will grow

• We have proven it on multiple GPUs as well as FPGAs

• We enable a wide range of software and languages: that will grow too

• We are enabling a rapidly-growing range of HPC & AI frameworks

© 2023 Codeplay Software Ltd27

Come join us

• You can join oneAPI and help shape our future

• You can checkout the oneAPI source code

• You can download pre-built binaries of oneAPI for Intel,
NVIDIA and AMD GPUs

• You can bring your own hardware and software

• https://www.oneapi.io/community/

https://www.oneapi.io/community/

Enabling AI & HPC to be open, safe and accessible to all

Intel technologies may require enabled hardware, software or service activation.
No product or component can be absolutely secure.

Your costs and results may vary.
© Codeplay Software Ltd.. Codeplay, Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the

property of others.

