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Abstract

Over the last 20 years, the open-source community has provided more and more software on which the world’s high-
performance computing systems depend for performance and productivity. The community has invested millions of
dollars and years of effert to build key components. However, although the investments in these separate software ele-
ments have been tremendously valuable, a great deal of preductivity has also been lost because of the lack of planning,
coordination, and key integration of technologies necessary to make them werk together smoethly and efficiently, both
within individual perascale systems and berween different systems. |t seems clear thar this completely uncoordinated
development model will not provide the software needed to support the unprecedented parallelism required for petal
exascale computation on millions of cores, or the flexibility required to exploit new hardware models and features, such
as transactional memory, speculative execution, and graphics processing units. This report describes the work of the
community to prepare for the challenges of exascale computing, ultimately combing their efforts in a coordinated Inter-

national Exascale Software Project.
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DOE HPC Roadmap to Exascale Systems
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Frontier System Frontier Cabinet Frontier Node

AMD extraordinary engineering

84 Ok Riop : ' T ?;‘IZ?KlI\I:DrigI;eS * 1 AMD “Trento” CPU (optimized Milan)
4 AMD MI250X GPUs
@ EiERGY I'FI‘R‘\,_)‘H et * 8,000 Ibs _
N T m— * Supports 400 KW * 512 GiB DDR4 memory on CPU
ARSI B e i i o * 512 GiB HBM2e total per node
- e oo @ 4 Cassini NICs connected to the 4 GPUs
I
System
* 74 compute racks ‘ A ,
e 29 MW Power Consumption Campute Shades fen Compute blade
* 9,408 nodes o ' e 2 AMD nodes
* 9.2 PB memory T ——
(4.6 PB HBM, 4.6 PB DDR4) { iy
* Cray Slingshot network with

dragonfly topology e
e 37 PB Node Local Storage
e 716 PB Center-wide storage
* 4000 ft? foot print

All water cooled, even DIMMS and NICs
COMPUTING

FACILITY

5 %OAK RIDGE

National Laboratory

4



OAK RIDGE NATIONAL LABORATORY'S FRONTIER SUPERCOMPUTER
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AMD 2l i

74 HPE Cray EX cabinets

* 9,408 AMD EPYC CPUs,

37,632 AMD GPUs

* 700 petabytes of storage
capacity, peak write speeds
of 5 terabytes per second
using Cray Clusterstor
Storage System

* 90 miles of HPE Slingshot
networking cables

: Sources: May 30, 2022 Top500 release

TOP500

#

1.1 exaflops of
performance on the
May 2022 Top500.

-

GREENS500

12

62.04 gigaflops/watt
power efficiency on
a single cabinet.
52.23 gigaflops/watt
power efficiency on
the full system

-

6.88 exaflops on the
HPL-Al benchmark.

-




Exascale Computing Project has three technical areas to meet
national goals

Performant mission and science applications @ scale

Foster application Ease Diverse HPC
development of use architectures leadership

et e — . _A——— — ——
C ot Software Hardware
Application Development (AD :
PP P (AD) Technology (ST) and Integration (HI)
Develop and enhance the predictive Produce expanded and vertically Integrated delivery of ECP
capability of applications critical to integrated software stack to achieve products on targeted systems at
the DOE full potential of exascale computing leading DOE computing facilities

80+ unique software 6 vendors supported
25 applications ranging from products spanning by PathForward
national security, to energy, earth programming models focused on memory,
systems, economic security, and run times, math node, connectivity
materials, and data libraries, data and advancements;
visualization deployment to facilities

EXASCALE
COMPUTING
PROJECT

56 https://www.exascaleproject.org/ —Q
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Extreme-scale Scientific Software Stack 0
(E4S) Spack

E4S: HPC software ecosystem — a curated software portfolio

https://spack.io
Spack lead: Todd Gamblin (LLNL)

» A Spack-based distribution of software tested for interoperability
and portability to multiple architectures

» Available from source, containers, cloud, binary caches

» Leverages and enhances SDK interoperability thrust

* Not a commercial product — an open resource for all

« Growing functionality: May 2022: E4S 22.05 — 100+ full release products

Portfolio testing\

Co-Design: AMReX, Cabana, MFEM

. - DocPortal
Com.mumty pv(3|ICI?S Single portal to all Especially leadership
CommitmenttoisyadLlity E4S product info platforms
Curated collection Quarterly releases 10 B%iiﬁg%ﬁ?
The end of dependency hell Release 22.2 — February ! improvement E4S lead: Sameer Shende (U Oregon)
\\
Turnkey stack _ : Post-ECP Strategy Also includes other products, e.g.,
A new user experience @ https.//e4s.|o Al: PyTOI'Ch, TensorFIow, Horovod

Commercial E4S, SSO/

e ~——

\\ EXASCAHALE

) —] COMPUTING
PROJECT
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ECP is Improving the LLVM Compiler Ecosystem

*\ery popular open-
source compiler
infrastructure

*Permissive license

*Modular, well-
defined IR allows
use by a lot of
different languages,
ML frameworks, etc.

Backend
infrastructure
allowing the efficient
creation of backends
for new
(heterogeneous)
hardware.

A state-of-the-art
C++ frontend,
CUDA support,
scalable LTO,
sanitizers and other
debugging
capabilities, and
more.

*Enhancing the
implementation of
OpenMP in LLVM

*Unified memory

*Prototype OMP
features for LLVM

*OMP Optimizations
*OMP test suite

*Tracking OMP
implementation
quality

*Training

The LLVM Compiler Infrastructure

LVM Overview

+ PROTEAS-TUNE

*Core optimization
improvements to
LLVM

*OpenMP offload

*OpenACC capability
for LLVM

*Clacc

*Flacc

*Autotuning for
OpenACC and
OpenMP in LLVM

*Integration with Tau
performance tools

*SYCL characterizing
and benchmarking

*Kokkos offloading

*Leading LLVM-DOE
fork

*Developing an open-
source, production
Fortran frontend

*Upstream to LLVM
public release

*Support for OpenMP
and OpenACC

*Recently approved
by LLVM

*Initial implementation
of serial F77
compiler for CPUs
under review

Other ECP activities with LLVM emerging organically.

+ HPCToolkit

*Enhancing LLVM to
optimize template

*Improvements to
OpenMP profiling

interface OMPT expansion for
FlexCSl, Kokkos,
+OMPT specification RAJA, etc.
improvements

*Flang testing and

*Refine HPCT for evaluation

OMPT improvements
Kitsune and Tapir

' £)
SYM

COMPILER INFRASTRUCTURE

*Increasing
dependence on
LLVM

*Many vendors import
and redistribute
LLVM

*Contributions and
collaborations with
many vendors
through LLVM
*AMD
*ARM
*Cray
*HPE
*IBM
*Intel
*NVIDIA

DEVELOPERS' MEETING

OCTOBER 6-8

Active involvement with broad LLVM community: LLVM Dev, EuroLLVM

ECP personnel had 10+ presentations at the 2020 Dev Meeting

gOAK RIDGE

National Laboratory



KokkACC: Enhancing Kokkos with OpenACC

The Science B OpenACC

1 1 1 . CUDA
This s’ru.d.y set out ’rp improve the programming Openip Target
productivity and capacity of Kokkos programing model, 1000, . -a'++ OpenMP Target/OpenACC 100
the reference programing model for performance Te @ CUDA/Openace

portability, by using OpenACC. Due to the descriptive

@100 o
nature of OpenACC, the new OpenACC back end of S 10 g
. . . r o
Kokkos is not only simpler to implement, but also cheaper S °
to maintain than other back ends such as CUDA or HIP, = 5
. . . . . [«3]
which are typically not designed to deal with Kokkos high- £ 18
. v
level programing constructs. '
The Impact 0.1 0.1
. . 50 75 100 125 150 175 200 225
This study was awarded best paper by the Ninth Size
Workshop on Accelerator Programming Using Directives,

: : This graphic illustrates the run time of different Kokkos back ends;
at the I.nTemoTlonoI. Conference for High Eerformonce OpenACC  (KokkACC), OpenMP-Target and CUDA on high-
Computing, Networking, Storage, and Analysis 2022. %eéfr\?[maga?w &?Tmputing runs, of the ECP LULESH code on one

. . . . S supercomputer.
The OpenACC's integration with Kokkos has provided P P
.neW capacifies fhat enhance KOKKOS with new COF)CICITIGS PI/Facility Lead(s): Jeffrey S. Vetter, Pedro Valero-Lara
in terms of performance, portability, heterogeneity and ASCdR Progg%m/F%cilify: ECRP
. Funding: ASCR, ECP
OUTOTUﬂIﬂg. The result, KokkACC, has proven faster than Publication(s) for this work: Pedro Valero-Lara, et al., “KokkACC:
OpenMP-Target and CUDA back ends by as much as an Enhancing Kokkos with OpenACC,” Ninth Workshop on

: : Accelerator Programming Using Directives, International
Orde.r Of.mongUde on some of the most |mpor’ronT ECP Conference for High Performance Computing, Networking,
applications, such as LAMMPS or Lulesh. Storage, and Analysis 2022.

DOI: 10.1109/WACCPD56842.2022.00009
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Predictions

e “lt's tough to make predictions, especially
about the future” — Yogi Berra

» “Prediction is very difficult, especially about
the future” -- Niels Bohr
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How did our predictions play out?

Misses

Hits

e System power came in at O(20MW)

not O(1GW) expected (of 2018)
e Few major software rewrites / e Programming systems are multiplying
evolution and immature/incomplete
e So far, FORTRAN -> C++ is the main e Hardware diversity
conversion .

e ECP included applications, software,
and hardware

e ~70 teams, ~1000 researchers
e |[ESP e

Systems deployed 4+ years later than

Resiliency and fault tolerance

Dwindling number of vendors
capable of $100M+ procurements

HOW STANDARDS PROUFERATE:
[C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, £TC)

ECP Panel at ECP AHM in May 2022

Jeffrey Vetter (ORNL), Moderator
Pete Beckman (ANL)

Jack Dongarra (UTK, ORNL)

Bob Lucas (Ansys)

Kathy Yelick (UCB)

Overlooked

e Productive programming models (ala
Al/ML): Python, Jupyter, Julia

e Cost of ECP + NRE + Procurements
approaches ~S4B USD

e Al/ML is not predicted (or even
mentioned)

¢ Cloud deployment models
e Green/sustainable computing

. ¥?! RiDIcULoUs!
e Concurrency (1B-way parallelism) WE NEED To DEVELOP
e Open-source software VATION: 1 1447 coveRs EVERYONE'S
THERE ARE USE CASES.  yp
4 COMPETING N
STPNDERDS. O

SITUATION:

THERE. ARE
|5 COMPETING
STANDARDS.

OAK RIDGE

National Laboratory



I ¥ OAK RIDGE
National Laboratory

Pondering Post-Exascale
Computing

* Thinking about the next 10-15 years




TOP500 Macro View

...
PERFORMANCE DEVELOPMENT 500
1 Eflop/s 1.1 EFlop/s
100 Pflop/s
10 Pflop/s #1
1 Pflop/s
100 Tflop/s
10 Tflop/s
1 Tflop/s Any potential zettascale system will
100 Gflop/s require a ~1000x improvement in
: energy efficiency over Frontier.
10 Gflop/s 59.7 GFlop/s
1 Gflop/s |
100 Mrlop/s 1994 199@998 2000 2002 2004 2006 2010 2012 2014 2016 2018 2020
Tl 1012 Pfl 1015
anioved.  O(107 e 0(10) Eflops (10°2)
ASCI Red 11 Years RoadRunner 14 Years Achieved

Sandia NL
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Important Architectural Trends

CHIPS enables rapid integration of
functional blocks at the chiplet level

e Chi pletS Custom chiplets ~ Commercial chiplets
S
— Improved yields === !:::
P L Today — Monolithic Tomorrow — Modular Som— ~ N .

 Heterogeneous integration

— Integration of *many* different
technologies into the same package

Image: Intel Ta

o COMM RADAR EW SIGINT
e CHIPS and Science Act — _— ==
3 I Adagtie filter [l SecDes Bl 5D
’ HA?.IMHDTQM ik Bl Gemforming [l Besmforming I Adaptive fiter
g B ofDecomp. [ QRDeczerp,

Silicon interposer Optiona multiple

logicdies
Bum -
I T

C4 Cu Bumps

~

Figure 1. CHIPS Vision (DARPA)

[DARPA ERI Summit 2018]

B e A = = Intel’s Xe for HPC: Ponte Vecchio with Chiplets, AMD RDNA 3/Navi 3X GPU Update: 50% Better
Pac%gggqrrrqa =, EMIB, and Foveros on 7nm, Coming 2021 Perf-Per-Watt, Using Chiplets For First Time Com
. e by Ryan Smith on June 9, 2022 4:39 PM EST
Pack age Pac kage Su b's t rat e A e e | Postedin GPUs AMD Radeon Chiplets RDNA3 AMDFAD 2022 Navi3x
Ba”S Posted in GPUs Intel HPC 7nm EMIB FOVEROS Xe PonteVecchio Chiplets

T 0000 M OO0 W 000000000 WS O O
Circuit Board

FRITUNNNY )
e

A\ \ \ AMDZ THE JOURNEY
\\ RDNA 3 | conTINUES

Short Wires

Figure 21. An example showing the use of 2D and 3D interconnections (courtesy TSMC)

[[EEE HIR 2021]

100
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Specialization using
Standards

* Proprietary chiplets already here

e Ecosystems and standards are
underway

— CXL, UCle, BoW, ...

e Open-source Tools and IP

— RISC-V, Openlane,
Silicon Compiler, etc

e Open foundries

* Codesign will be more
important than ever

e Extreme Heterogeneity

AMD to Fuse FPGA Al Engines Onto EPYC
Processors, Arrives in 2023 t

By Paul Alcorn published May 04, 2022

AMD to arr

NVIDIA Opens NVLink for Custom Silicon Integration

000

Tuesday, March 22, 2022

GTC—Enabling a new gener:

| NVLink-C2C, an ultra-fast ¢

ll interconnect to the compan

With advanced packaging, b

90x more area-efficient thal

ima A e s e S5

(Image credit: Tom's Hardware)

AMD announced during its earnings
Xilinx's FPGA-powered Al inference ¢
arrive in 2023. The news indicates ti
f . : ]

Intel, AMD, and Arm

By Paul Alcorn published March 02, 2022

wiring it up

0000

By Agam Shah

October 6, 2022

Intel is opening up its fabs for acac
their hands on physical versions o
semiconductor research and deve

The effort, called the university shi
educational institutions access to *
training and talent development,” ¢
keynote at last week’s Innovation !

Large chip designers like Apple an

pay their way to dominate manufai
(mage credie Uiy S€Miconductor Manufacturing Co.
Smaller chip companies like Al chi

Abroad range of 566764 and unable to secure m
among others, ir.___

consortium today with'the goal of standardizing die—to—a
hetween chiplets with an open-source design, thus redut
a broader ecosystem of validated chiplets. In the end, the
be just as ubiquitous and universal as other connectivity
PCle, and NVMe, while providing exceptional power and

chiplet connections. Notably, all three of the leading four
tech, along with the x86 and Arm ecosystems (RISC-V anc
absent).

Ultra Energy-Efficient Die-to-Die and Chip-to-Chip Link for NVIDIA GPUs, DPUs and ‘
CPUs Opens New Wc "~ o ’

New UCle Chiplet Standard Supported by

Intel Is Opening up lts Chip Factories to Academia

Modular AMD Chips to Embrace Custom 3rd
Party Chiplets

By Francisco Pires published June 17, 2022

Supercharging learnings -

o @QOO ® Comments (3)

and earnings - from the console space.

(Image credit: AMD)

AMD is extending its custom chip design services even as it aims to offer a
portfolio that's close and personal to its client's requirements. During its latest
analyst day meeting, AMD Chief Technical Officer (CTQ) Mark Papermaster spoke




Reimagining Codesign

* Four priority research

directions

— Drive Breakthrough Computing
Capabilities with Targeted
Heterogeneity and Rapid Design

— Software and Applications that
Embrace Radical Architecture Diversity

— Engineered Security and Integrity from
Transistors to Applications

— Design with Data-Rich Processes

 We must make codesign agile,
more accurate, and use real
workloads

7 Sep 2022 Abisko

Overview Brochure

Basic Research Needs for
Reimagining Codesign for
Advanced Scientific Computing

Unlocking Transformational Opportunities
for Future Computing Systems for Science

16-18 March 2021

https://doi.org/10.2172/1822198

Office of

, U.S. DEPARTMENT OF
ENERGY Science

L 13 N VATV AT AV AW AT SN AT SN AU RN SN NN AN

2021 Workshop

https:

'www.osti.gov/biblio/1822198-reimagining: -codesign-advance d-scientific-computing-un locking-trans formational-opportunities-future -computing-systems: -science
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Abisko: Microelectronics
Codesign Project

« Aaron Young, Prasanna Date, David
Brooks, Farah Fahim, Frank Liu, Gu-Yeon
Wei, Holland Hysmith, Anton levleyv,
Kevin Cao, Shruti Kulkarni, Sung-Kyu Lim,
Petro Maksymovych, Marc Gonzales
Tallada, Matthew Marinella, Narasinga
Rao Miniskar, Nhan Tran, Pruek Vanna-
lampikul, Catherine Schuman, Bobby
Sumpter, Alec Talin, Jeffrey Vetter

i

Collaborator

OAK RIDGE . HARVARD
FSU Gr

. UNIVERSITY
National Laboratory *

Fermilab

2 . 103 50
Arizona State Georgia
Sandia National Laboratories ~ Unversity Tech.

This research is funded by the DOE Office of Science Research
Program for Microelectronics Codesign (sponsored by ASCR,
BES, HEP, NP, and FES) through the Abisko Project with program

managers Robinson Pino (ASCR), Hal Finkel (ASCR), and Andrew
Schwartz (BES).



Abisko Microelectronics Codesign Overview
ollaborator Applications
OAKRIDGE  neyy G HARVARD | coleb -
|
|
|

National Laboratory UNIITY *
ﬁri_zona_ State Georgia v
| Sandia National Laboratories ~ University Tech. Fermilab Motifs, Composition

1. Develop better techniques for codesign from algorithms to
devices and materials

Algorithms
2. Design Spiking Neural Network chiplet that can be integrated

with contemporary computer architectures

3. Explore new devices and materials for the SNN chiplet
(neuron, synapse, plasticity, etc.)

4. Design language abstractions and runtime
support for SNN chiplet

API, Motifs

Software
" X ‘7 \ ﬁA, IR

7 . ) 4 : Outputs
L\ It Myelin sheat
\_ > \ o Myelinated axon =
Input H
fae Architecture
Source: Wikipedia

Circuit scale up,
Interconnects, PDK

Devices and
Circuits
/Compact models
| Materials A KRiboE
1 .ational Laboratory

Deep Codesign
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Abisko Microelectronics Codesign Overview

Collaborator

FJE

- UNIVERSITY
National Laboratory

OAK RIDGE | HARVARD |
ESU Gr i

|

|

00
Arizona State Georgia v
. . : University Tech.
) Sandia National Laboratories Fermilab

1. Develop better techniques for codesign from algorithms to
devices and materials

2. Design Spiking Neural Network chiplet that can be integrated
with contemporary computer architectures

3. Explore new devices and materials for the SNN chiplet
(neuron, synapse, plasticity, etc.)

4. Design language abstractions and runtime
support for SNN chiplet

Outputs

Myelin sheat

Myelinated axon

I nipiuts

Source: Wikipedia

Motivation

Transportation
CMS Sensors

Applications

Motifs, Composition

3.8T Solenoid

Muon System
Endcap
(CSC+RPC)



Slide courtesy of F. Fahim (FermilLab)
T—

CMS Experiment

40MHz collision rate
~1B detector channels

FPGA filter stack
~us latency

10s Gb/s
~S5 kHz

10s Tb/s

On-detector 1005 kHz

ARl < opegssion

Worldwide

ki id
Exabyte-scole

datasets
On-prem CPU/GPU
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Pixel Detector: Proposed ML implementation 21
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1. Develop better techniques for codesign from algorithms to

devices and materials
2. Design Spiking Neural Network chiplet that can be integrated

with contemporary computer architectures
3. Explore new devices and materials for the SNN chiplet

(neuron, synapse, plasticity, etc.)

4. Design language abstractions and runtime

support for SNN chiplet
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Algorithms: Developing SNN Encoding and Configuration

(21)

(13}
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Figure 1. End-to-end in-pixel filtering of particle charge clusters into high pT or low pT samples. Each real-valued incoming signal
from the 13 x 21 array is converted into spike streams. The inter-spike times are related to the rise and fall time of the signal
waveform. There are two input spike channels per sensor waveform: one corresponding to the rising edge (in brown) and another

for the falling edge (in cyan).
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Example Virtual Neuron in Aurora eDSL

(1)

def x_pos("x_pos", Layer); // positive number X

def bits_pos("bits_pos", Layer); // positive bit neurons

use create_neuron("create_neuron”, (Real=0, Real=-1.0) ->* LIF);
X_pos|0,positive_precision-1] = create_neuron(0);

bits_pos[0,positive_precision][0] = create_neuron(0);
bits_pos|[0,positive_precision][1] = create_neuron(1);
bits_pos[1,positive_precision][2] = create_neuron(2);

var range(Range);
range = (0, positive_precision-1);

Connect(x_pos[range],
bits_pos[rangelln 11\ = Sungpse("weight”_m = 1.0,
Collapse Section "delay"_m = Real(range+1));
Connect(x_pos[1, positive_precision-1],
bits_pos[range][2]) = Synapse("weight"_m = 1.0,
"delay"_m = Real(range+1));

Figure 6. Extract of Virtual Neuron graph specification in
Aurora. Layers are defined and combined with Range type
variables, which generates Views of the nodes in the graph
layers. Usage of Connect operator to connect elements in the
graph. Usage of Synapse type, which is a derived type from
EdgeType native type in Aurora.

def("create_neuron”, (Real=0, Real=-1.0) ->* LIF,
Begin(in V_th, in internal_state) {
var neuron(LIF);
neuron["V_th"] = V_th;
neuron["V_m"] = internal_state;
neuron["tau_m"] = -1e-6;
neuron["t_ref"] = 0.0;
neuron["E_L"] = neuron["V_m"];

Return(neuron);

}); I def

Figure 7. Aurora definition of a function to generate a LIF
instance and update internal parameters of the LIF data model.
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Chiplet Architectures

* Design an (analog) SNN chiplet that can
be easily integrated with contemporary
technologies

— Heterogeneous integration with mixed
processes

— Compatible with existing processes

* Extensive advances in chiplets,
packaging, and heterogeneous
Integration recently

— Open Domain-Specific Architecture
— UClIe, BoW, TSMC SolIC-CoW, Intel Foveros

* Using open architecture to explore
chiplet designs: RISC-V, Openlane

RISC-V*°

7 Sep 2022 Abisko

CHIPS enables rapid integration of
functional blocks at the chiplet level

Custom chiplets  Commercial chiplets

=

Today — Monolithic Tomorrow — Modular

< S e

Image: Intel ;
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Figure 1. CHIPS Vision (DARPA)

[DARPA ERI' Summit 2018]
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Figure 21. An example showing the use of 2D and 3D interconnections (courtesy TSMC)



Design of 2.5D Chiplet for Neuromorphic Computing (1)
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Design of 2.5D Chiplet for Neuromorphic Computing (2)
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Figure 17. (a) Mathematical and (b) electrical vector matrix
multiplication (Marinella et al. 2022).



ASIC Flow for Digital NN Inference (baseline)

7 Sep 2022

Eal

Investigate the performance of fully
customized ASIC design for ultra-fast
NN inference

Model details:

— Fixed NN architecture with quantized
weights

— Experimented with 2bit or 3bit of inputs
(limited by FermiLab implementation)

Flow:
— Vitis HLS to generate RTL
— Catapult logic synthesis

— Customized backend layout tool (incl.
tech mapping, placement and routing)

Achieved clock frequency of 1~ 2GHz
in a 28nm technology

Layer Parameters Python
Bitwidth of features and weights

Bus width of Interface DNN Layer
Fixed / Loadable Weights Generator

input: | [(None, 13, 21, 1)]
conv2d_input | InputLayer

output: | [(None, 13, 21, 1)]

|

(]

input: | (None, 13, 21, 1)
conv2d | Gonvah output: | (None, 6, 10, 32) Convo
1]
max_pooling2d | MaxPooling2D Input: | (None, 6, 10, 32) maXpOO“n(
output: | (None, 3, 5, 32) A

I

| L

A J

input: | (None, 3, 5, 32) ConV1

conv2d_1 | Conv2D
output: | (None, 1, 2, 64)
I
flatten | Flatten input: | (None, 1, 2, 64)
output: (None, 128)
I
v
[T input: | (None, 128) denseo
output: | (None, 64)
input: | (None, 64)
dropout | Dropout

output: | (None, 64)

|

]

input: | (None, 64) dense1

dense_1 | Dense
output: | (None, 5)
Layer . , RTL
- .y - Vivado Toolchain >
XilinxCL
Abicl

1980 um
anviy Bot Top
it 1320 um
i Densel{w)
Dense0(g)_:+1
0 b ense i
Dense0(g ~ ConvDif)
Pool(yk |
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Figure 15. Placement comparison between 2D and 3D

designs. SRAM arrays are placed on the sides in 2D and on the
top tier in the 3D case. The modules are colored as conv0 (red),
pool (yellow), conv1 (blue), dense0 (green), and dense1 (white).
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Devices and Circuits
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non-linear switching
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Devices and Circuits

e Goals

— Harness the interplay between mobile defects (ions and vacancies) and electronic properties to realize functional elements
for spiking and non-spiking analog neuromorphic networks

- Create and validate small network models; generate device and network data for co-design

- Understand and mitigate radiation induced degradation mechanisms at the device and circuit level

1) ECRAM
Gate
“lon
g Drain
¥ -

2) ReRAM 0? anions
TiN exchange
Ta (15 nm) switching

TaOy (5-10 nm) (+) charged

vacancies




Experimental TaOx ReRAM Conductance Distributions

Developed TaOx 200ohm spacing between resistance targets
1000hm spread between R

weight mapping and R
programming routine
for optimizing

inference accuracy

min?

2 4 6 8 10 12 14 16 18 20
Resistance (kQ)

max

# Devices

Resulting conductance distribution

Ta (15 nm)

TaO,
(5-10 nm)

# Devices

50 100 150 200 250 300 350 400 450 500
Conductance (NS)
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Characterizing Candidate Materials for Neuromorphic Computing

Microwave Microscopy of VO,_

3 GHz conductance of ECRAM channel

To microwave (3 GHz)

AFM cantilever
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Figure 20. ECRAM device. (a) Schematic and cross-section
TEM of WOz, ECRAM cell. (b) Analog switching characteristics
that demonstrate high state density. (c) ECRAM retention
characteristics when the gate and channel are shorted at
200°C. (d) Comparison of retention times of WO3., ECRAM with
filament-based ReRAM and past TiO,-based ECRAM. (Yi et al.
2022) Copyright 2022, Wiley.
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Recap

Visit us (post COVID ©)

 Our predictions were reasonably accurate, but we ~ We host inferns and other
visitors year round

completely missed some
* Faculty, grad, undergrad,

— Al/ML high school, industry
— Programming systems remain major challenge

Exascale is here!

« Jobs at ORNL
* Post-exascale ~ Visit https://jobs.ornl.gov
— Heterogeneous integration and Chiplet architectures are  Contact me

vastly diversifying the architectural landscape
vetter@ornl.gov

— Post exascale will be accelerated by recent major
semiconductor investments

Experimental Computing

 Deep codesign is critical moving beyond Exascale Lab

— Abisko is a new microelectronics codesign project — Lots of emerging archs
developing a chiplet for analog SNN — https://excl.ornl.gov

OAK RIDGE

National Laboratory
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