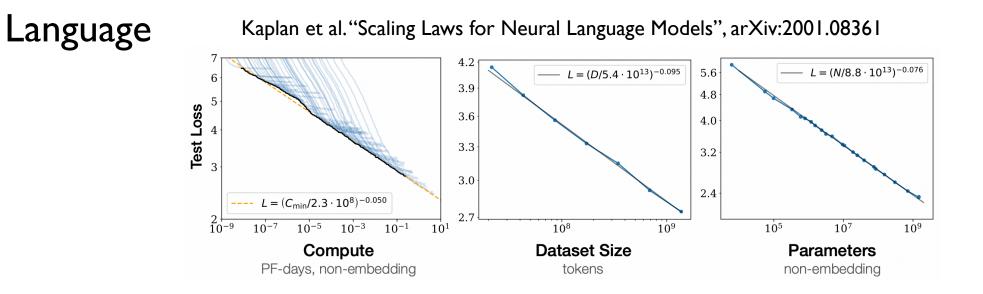
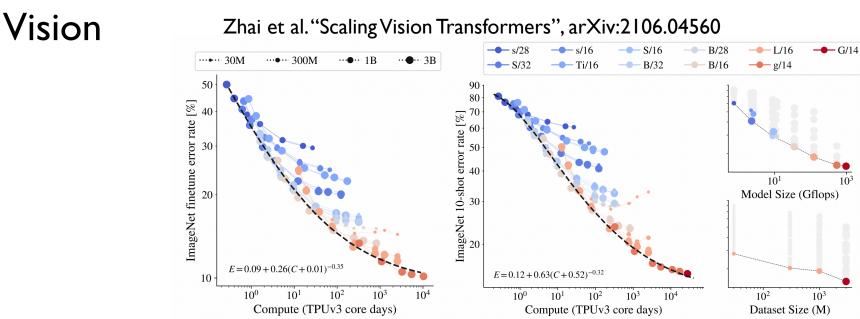

# Training Vision Transformers with Synthetic Images


- -


Multicore World X 13–17 Feb. 2023 Wellington, NEW ZEALAND Tokyo Institute of Technology Rio Yokota rioyokota@gsic.titech.ac.jp

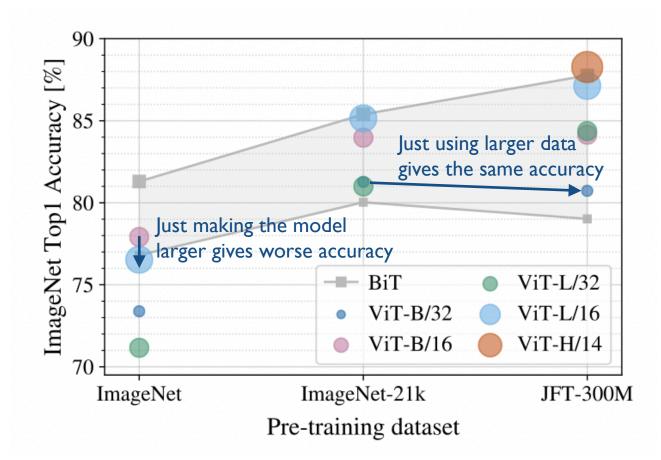
Tokyo Tech



## Scaling Laws of Transformers






 $10^{3}$ 

気

Tokyo Tech

### Pre-training of Vision Transformers

- The pre-training of large vision transformers requires large datasets
  - Large models alone do not lead to better results
  - Large data alone do not lead to better results
- The largest dataset JFT-300M is own by Google and is not available publicly

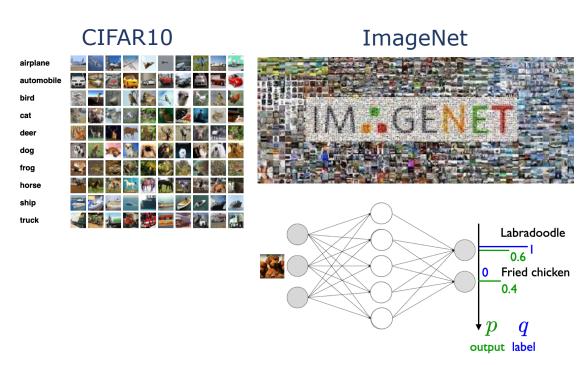


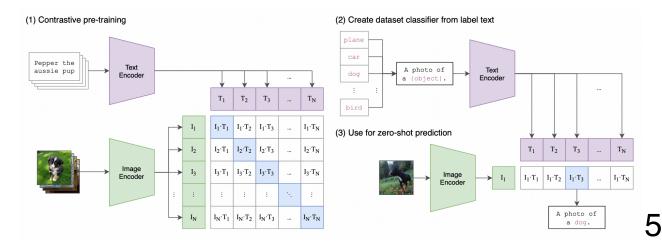


## Open-source Multi-modal Datasets



### • Classifying into a million bins?


- Classification doesn't scale
- Hierarchical labels?
- Vision+Language models
  - Pair of text and image
  - Works at scale

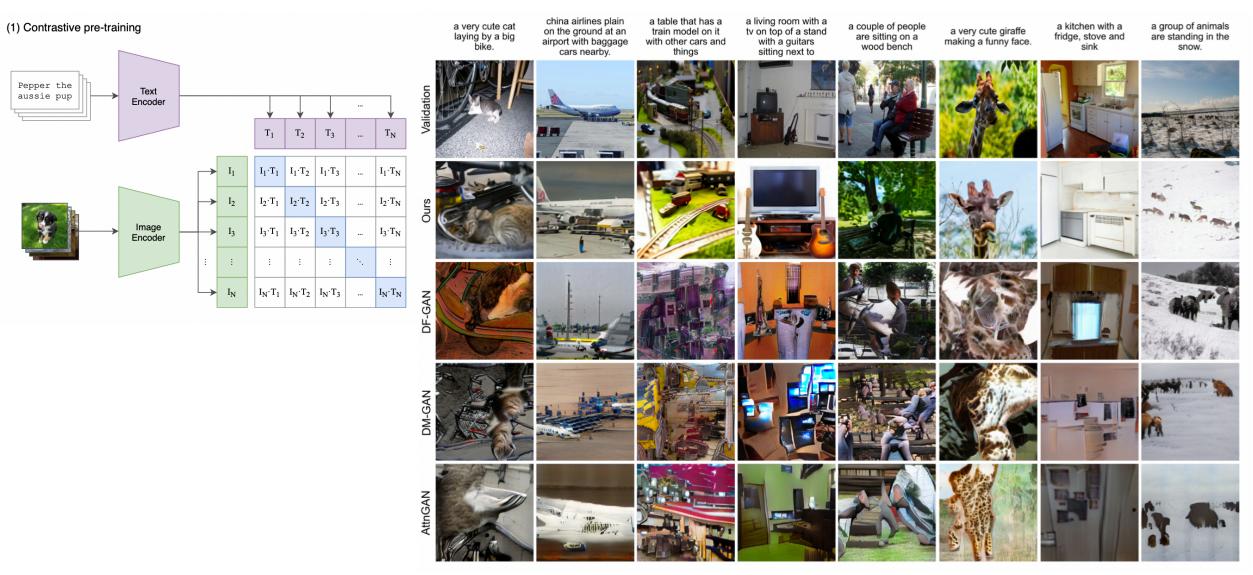

#### LAION-5B: A NEW ERA OF OPEN LARGE-SCALE MULTI-MODAL DATASETS

by: Romain Beaumont, 7 Jul, 2022

We present a dataset of 5,85 billion CLIP-filtered image-text pairs, 14x bigger than LAION-400M, previously the biggest openly accessible image-text dataset in the world.

Authors: Christoph Schuhmann, Richard Vencu, Romain Beaumont, Theo Coombes, Cade Gordon, Aarush Katta, Robert Kaczmarczyk, Jenia Jitsev






## Vision + Language Models

Pepper the

aussie pup





# Vision + Language Models



#### GLIDE



calculator'





ing a "a corgi wearing a red bow and a purple party hat" "robots meditating in a vipassana retreat" "a fall landscape with a small cottage next to a lake"

#### Dall-E2



Imagen

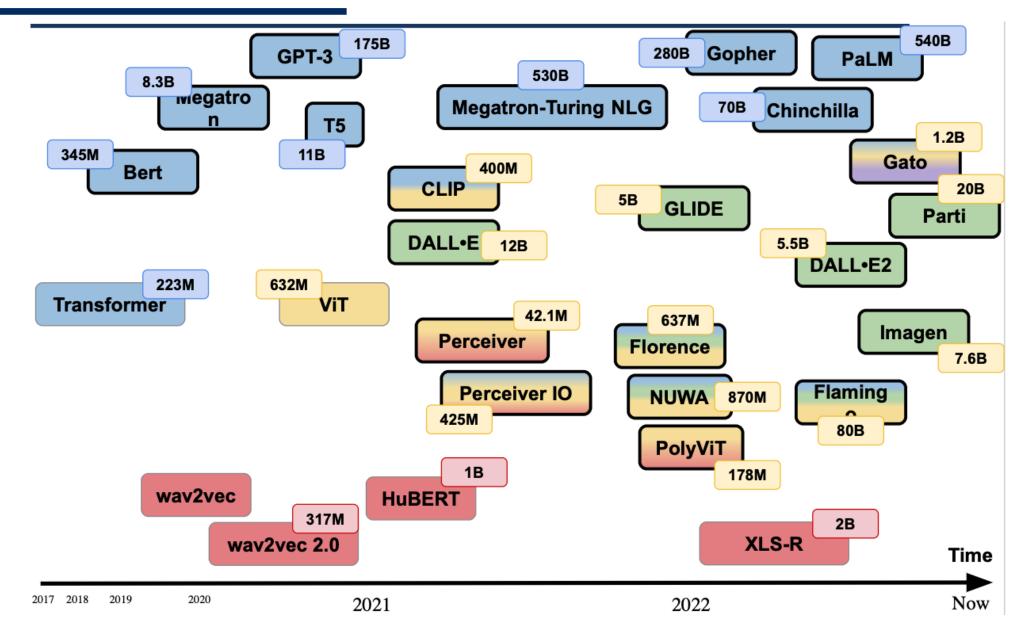


eddy bears swimming at the Olympics 400m Butter- A cute corgi lives in a house made out of sushi. A cute sloth holding a small treasure chest. A brigh golden glow is coming from the chest.

Parti



A. A photo of a frog reading the newspaper named "Toaday" written on it. There is a frog printed on the newspaper too.


B. A permit of a status of the Egyptian god Anabis wearing anistor opsigle, white solution and leader jucket. The sty of Las Ages working a viscoil state and is treading a book. The horizon is station to its is in the biologround. Hives DSLR photograph wearing a state of the biolograph. A state of the state.

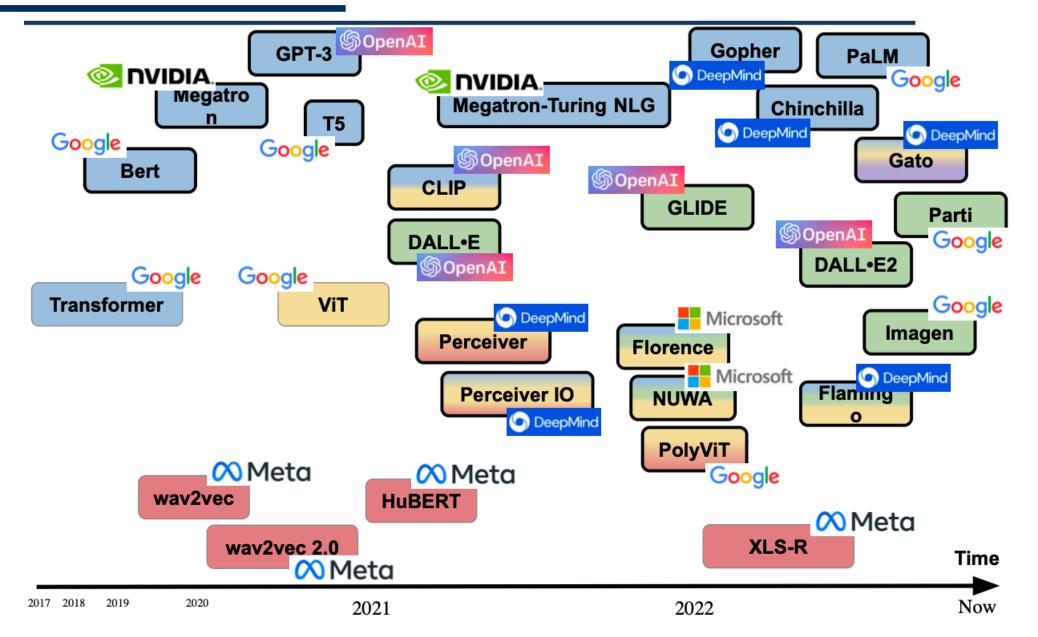
- Mix of modalities
  - Text encoder
  - Vision encoder
  - Diffusion model
- Diffusion models are extremely good at generating high res. images


• Using a good language model (T5-XLL) is important

### Model size






#### Dataset size





### Affiliation





# **INCITE** Project







 Type:
 New

 Title:
 "Scalable Foundational Models for Transferable Generalist AI"

#### Principal Investigator:

Irina Rish, University of Montreal, Mila - Quebec AI Institute

- Project Members
  - Irina Rish (University of Montreal)
  - Sergey Panitkin (University of Montreal)
  - Guillaume Dumas (University of Montreal)
  - Stella Biderman (EleutherAI)
  - Jenia Jitsev (Jülich Supercomputing Centre)
  - Mehdi Cherti (Jülich Supercomputing Centre)
  - Quentin Anthony (Ohio State University)
  - Guillermo Cecchi (IBM Research)
  - Rio Yokota (Tokyo Institute of Technology)











# **INCITE** Project



#### • Research Item 1: GPT-NeoX

| Parameters  | FLOPs                | V100-hours  | Node-hours |
|-------------|----------------------|-------------|------------|
| 400 Million | $1.9 \times 10^{19}$ | 176         | 30         |
| 1 Billion   | $1.2 \times 10^{20}$ | 1,120       | 186        |
| 11 Billion  | $1.2 \times 10^{22}$ | 113,888     | 18,981     |
| 30 Billion  | $1.2 \times 10^{23}$ | 1, 120, 370 | 186,728    |
| 40 Billion  | $2.2 \times 10^{23}$ | 2,046,296   | 341,049    |
| Total       | $7.0 \times 10^{23}$ | 3, 281, 844 | 546,974    |

#### • Research Item 2: OpenCLIP

| Pre-training                                   | samples<br>[count]    | runs<br>[count] | resources<br>#nodes | node-h  |
|------------------------------------------------|-----------------------|-----------------|---------------------|---------|
|                                                | -                     |                 |                     |         |
| CLIP extended (ViT L/14, LAION-400m)           | $\sim 4 \cdot 10^8$   | 10              | 64 – 1024           | 10,000  |
| CLIP (ViT L/14, LAION-400m)                    | $\sim 4 \cdot 10^8$   | 10              | 64 – 1024           | 100,000 |
| CLIP (ViT B/32, LAION-400m)                    | $\sim 4 \cdot 10^8$   | 10              | 64 - 1024           | 10,000  |
| CLIP, CLIP extended (ViT L/14, X-Ray superset) | $\sim 0.9 \cdot 10^6$ | 20              | 32 – 1024           | 5,000   |
| CLIP, CLIP extended (ViT H/14, X-Ray superset) | $\sim 0.9\cdot 10^6$  | 20              | 32 - 1024           | 30,000  |
| CLIP, CLIP extended (ViT g/14, X-Ray superset) | $\sim 0.9\cdot 10^6$  | 20              | 32 – 1024           | 180,000 |
| Total                                          |                       | 90              |                     | 425,000 |

#### Data Strong Scalability

| # Nodes | # GPUs | samples/sec | tokens/sec | Efficiency |
|---------|--------|-------------|------------|------------|
| 2       | 12     | 5.9         | 96,666     | 100.0%     |
| 4       | 24     | 11.2        | 183,501    | 94.9%      |
| 8       | 48     | 21.9        | 358,810    | 92.8%      |
| 16      | 96     | 42.9        | 702,874    | 90.9%      |
| 32      | 192    | 82.8        | 1,356,595  | 87.7%      |
| 64      | 384    | 168.3       | 2,757,427  | 89.1%      |
| 128     | 768    | 320         | 5,242,880  | 84.7%      |
| 256     | 1536   | 637.4       | 1,0443,162 | 84.4%      |

#### Data Strong Scalability

| # GPUs | Samples/sec                             | Efficiency (%)                                                                                                                                                                  |
|--------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6      | 1342                                    | 100.00%                                                                                                                                                                         |
| 12     | 2455                                    | 91.47%                                                                                                                                                                          |
| 24     | 4210                                    | 78.43%                                                                                                                                                                          |
| 48     | 7471                                    | 69.59%                                                                                                                                                                          |
| 96     | 14292                                   | 66.56%                                                                                                                                                                          |
| 192    | 28328                                   | 65.96%                                                                                                                                                                          |
| 384    | 54082                                   | 62.97%                                                                                                                                                                          |
| 768    | 103978                                  | 60.53%                                                                                                                                                                          |
|        | 6<br>12<br>24<br>48<br>96<br>192<br>384 | 6         1342           12         2455           24         4210           48         7471           96         14292           192         28328           384         54082 |

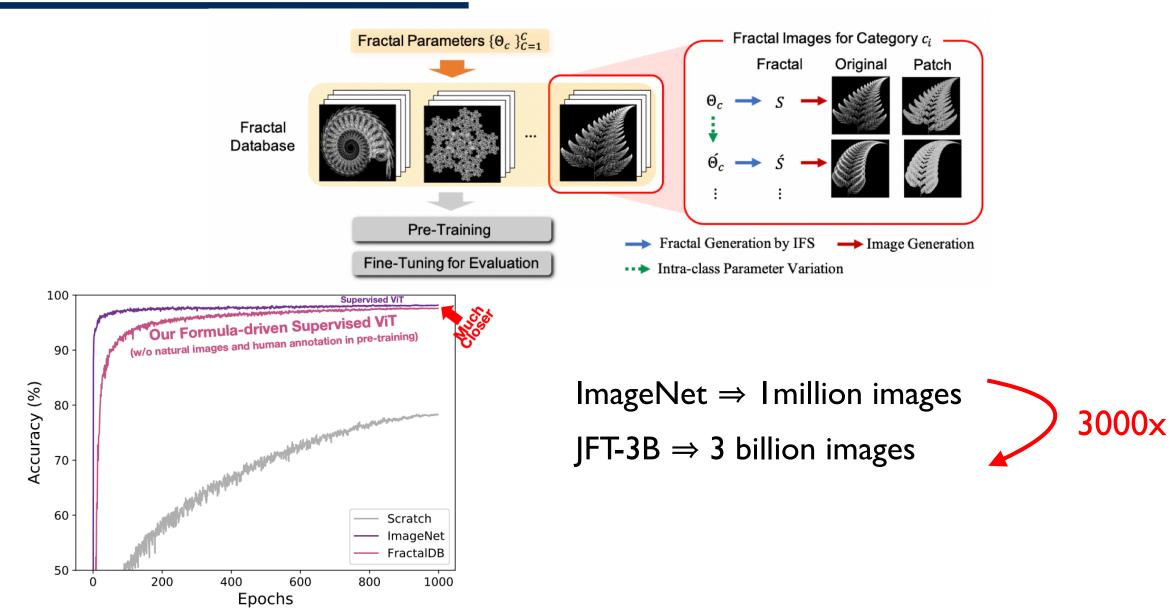
# Issues with Large Datasets



- Privacy
- Copyright
- Racial/gender bias
- Impossible to download
  - Petabytes of data
  - Scientific data is even larger
  - Bandwidth not keeping up
- Synthetic datasets
  - No need to clean
  - No need to download

Microsoft, GitHub, and OpenAl ask court to throw out Al copyright lawsuit




Getty Images is suing the creators of Al art tool Stable Diffusion for scraping its content





# Training with Synthetic Images from Fractals





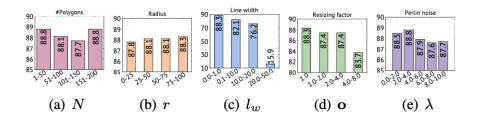
K. Nakashima, H. Kataoka, A. Matsumoto, K. Iwata, N. Inoue, Can Vision Transformers Learn without Natural Images? arXiv:2103.13023

## Challenges when Handling Large Datasets



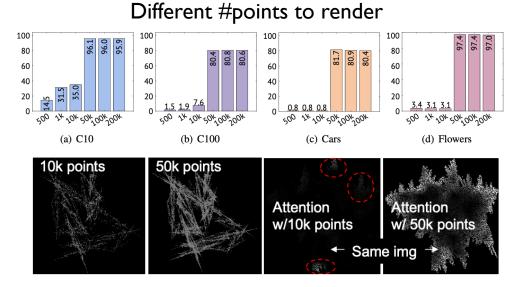


## Testing Various Synthetic Datasets




#### Different synthetic datasets

| Pre-training             | C10         | C100     | Cars | Flowers     |
|--------------------------|-------------|----------|------|-------------|
| Scratch                  | 78.3        | 57.7     | 11.6 | 77.1        |
| Perlin Noise [21]        | 95.0        | 78.4     | 70.6 | 96.1        |
| Dead Leaves [3]          | 95.9        | 79.6     | 72.8 | 96.9        |
| Bezier Curves [21]       | 96.7        | 80.3     | 82.8 | 98.5        |
| RCDB                     | <b>96.8</b> | 81.6     | 84.2 | <b>98.7</b> |
| FractalDB [27]           | 96.8        | 81.6     | 86.0 | 98.3        |
| Perlin Noise Dead Leaves | Bezier Cur  | ves RCDB |      | FractalDB   |


#### Increasing the #parameters of the dataset

| Pre-training | C10               | C100              | Cars              | Flowers           |
|--------------|-------------------|-------------------|-------------------|-------------------|
| BC           | 96.9 (0.2)        | 81.4 (1.1)        | 85.9 (3.1)        | 97.9 (-0.6)       |
| RCDB         | 97.0 (0.2)        | <b>82.2</b> (0.6) | 86.5 (2.4)        | <b>98.9</b> (0.2) |
| ExFractalDB  | <b>97.2</b> (0.4) | 81.8 (0.2)        | <b>87.0</b> (1.0) | <b>98.9</b> (0.6) |



#### Different # vertices in RCDB

| #Vertices    | C10                | C100         | Cars           | Flowers        |
|--------------|--------------------|--------------|----------------|----------------|
| 3–102        | 95.5               | 79.4         | 78.4           | <b>96.4</b>    |
| 103-202      | 94.2               | 76.3         | 55.8           | 95.9           |
| 203-302      | 71.3               | 46.9         | 4.9            | 49.8           |
| 303-402      | 59.4               | 33.9         | 2.5            | 26.8           |
| 403–502      | 40.1               | 13.6         | 0.8            | 5.3            |
| 3–502        | 96.4               | 80.7         | 83.0           | 98.5           |
| #Vertices: 3 | #Vertices: 103 #Ve | ertices: 203 | #Vertices: 303 | #Vertices: 403 |



# Synthetic Data is Competitive with Real Data



#### Classification (ImageNet-Ik)

Detection, Segmentation (COCO)

| Pre-training    | Img   | Туре | ViT-Ti      | ViT-B       |
|-----------------|-------|------|-------------|-------------|
| Scratch         | _     | _    | 72.6        | 79.8        |
| ImageNet-21k    | Real  | SL   | <u>74.1</u> | 81.8        |
| FractalDB-21k   | Synth | FDSL | 73.0        | 81.8        |
| FractalDB-50k   | Synth | FDSL | 73.4        | 82.1        |
| ExFractalDB-21k | Synth | FDSL | 73.6        | <u>82.7</u> |
| ExFractalDB-50k | Synth | FDSL | 73.7        | 82.5        |
| RCDB-21k        | Synth | FDSL | 73.1        | 82.4        |
| RCDB-50k        | Synth | FDSL | 73.4        | 82.6        |

| Pre-training    | COCO Det<br>AP <sub>50</sub> / AP / AP <sub>75</sub> | COCO Inst<br>AP <sub>50</sub> / AP / A |
|-----------------|------------------------------------------------------|----------------------------------------|
| Scratch         | 63.7 / 42.2 / 46.1                                   | 60.7 / 38.5 /                          |
| ImageNet-1k     | 69.2 / 48.2 / 53.0                                   | 66.6 / 43.1 /                          |
| ImageNet-21k    | <b>70.7 / 48.8 / 53.2</b>                            | <b>67.7 / 43.6</b> /                   |
| ExFractalDB-1k  | 69.1 / <b>48.0</b> / <b>52.8</b>                     | 66.3 / <b>42.8</b> /                   |
| ExFractalDB-21k | <b>69.2</b> / <b>48.0</b> / 52.6                     | <b>66.4</b> / <b>42.8</b> /            |
| RCDB-1k         | 68.3 / 47.4 / 51.9                                   | 65.7 / 42.2 /                          |
| RCDB-21k        | 67.7 / 46.6 / 51.2                                   | 64.8 / 41.6 /                          |

- ImageNet-21k is one of the largest open datasets
- Our synthetic dataset gives slightly better accuracy

H. Kataoka, R. Hayamizu, R. Yamada, K. Nakashima, S. Takashima, X. Zhang, E. J. Martinez-Noriega, N. Inoue, R. Yokota, "Replacing Labeled Real-image Datasets with Auto-generated Contours", CVPR2022.

# Pre-training on Synthetic Data at Scale



#### ViT-B: epoch, effect of fine-tuning image size

| pre-dataset | paper | shard | Ν   | batch_size | Ir     | epochs | acc         |
|-------------|-------|-------|-----|------------|--------|--------|-------------|
| mvf50k      | deit  | ~     | 224 | 8192       | 1.0e-3 | 40     | 82.5 (main) |
| mvf50k      | deit  | ~     | 384 | 8192       | 1.0e-3 | 40     | 83.6        |
| mvf50k      | deit  | ~     | 224 | 8192       | 1.0e-3 | 90     | 82.5        |
| mvf50k      | deit  | ~     | 384 | 8192       | 1.0e-3 | 90     | 83.4        |
| -           | -     | -     | -   | -          | -      | -      | -           |
| rc50k       | deit  | ~     | 224 | 8192       | 1.0e-3 | 40     | 82.6 (main) |
| rc50k       | deit  | ~     | 384 | 8192       | 1.0e-3 | 40     | 83.6        |
| rc50k       | deit  | ~     | 224 | 8192       | 1.0e-3 | 90     | 82.5        |
| rc50k       | deit  | ~     | 384 | 8192       | 1.0e-3 | 90     | 83.7        |

Pretraining with IOM images increases the downstream accuracy

Accuracy with i21k is 81.8 JFT-300M is 84.2

We achieve 83.7, which is close to JFT-300M

#### ViT-B vs ViT-L

| pre-dataset | shard | model | Ν   | batch_size | lr     | epochs | acc  |
|-------------|-------|-------|-----|------------|--------|--------|------|
| i21k        | ~     | base  | 224 | 8192       | 1.0e-3 | 90     | 81.8 |
| i21k        | ~     | large | 224 | 2048       | 5.0e-4 | 90     | 79.8 |
| mvf21k      | ×     | base  | 224 | 8192       | 1.0e-3 | 90     | 82.7 |
| mvf50k      | ~     | base  | 224 | 8192       | 1.0e-3 | 40     | 82.5 |
| mvf100k     | ~     | base  | 224 | 8192       | 1.0e-3 | 20     | 82.7 |
| mvf21k      | ~     | large | 224 | 2048       | 5.0e-4 | 90     | 80.4 |
| mvf50k      | ~     | large | 224 | 2048       | 5.0e-4 | 40     | 81.0 |

#### Something is not working for ViT-L

Even ImageNet-21k results are bad for ViT-L

We need to find the optimal hyperparameters for ViT-L

# Why does this work so well?



#### • We are only pre-training

- The model is fine-tuned on real data
- Your visual cortex is ready to learn when you are born
- Lower layers only learn local features
- Semantics are dealt with at higher layers

### Advantage of synthetic datasets

- They can be improved continuously
- Real datasets are static and can only increase in quantity
- They can be investigated systematically
- What makes a good vision dataset?



# Thank You

