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Note

* [deas and material presented in the following slides are my
view of a good technology direction and may or may not
represent development or product direction for Samsung. If

interested in those details, an NDA discussion would be
required.



Global SAIT (Samsung Advanced Institute of Technology) Labs

* SAIT was established in 1987 as a corporate R&D Center
- Founding Philosophy: "Boundless Research for Breakthroughs"
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Systems Architecture Lab

* Vision
- To develop the most innovative technologies for future HPC and Al systems

* Strategy

- To break through the memory wall by significantly increasing the memory byte/flop
ratio and reducing the power per bit with memory coupled compute

- To break through the communication wall with high network byte/flop ratio utilizing
memory coupled compute efficiencies and novel fabric technologies



Overview

* An inspiring observation

* Key considerations for HPC and Al systems
* The memory wall

* Tight coupling

* The communication wall

* Putting it all together

* Conclusion



Discontinuities

° VectOrS (Cray) 10.000.000.000

1.000.000.000

* Microprocessors (Beowulf) —_—_

10.000.000

e Multicore, multithread (x86/ Power)

1.000.000

* Massive parallelism (Blue Gene) 100,009
10.000

* Heterogeneity (GPUs) 000

100

* Memory coupled compute
- The next discontinuity 1
- Innovate the future collaboratively 0.1

10

1985 2000 2005 2010 2015 2020 2025

Source: Wikipedia.com based on data from the top500.org



Key Considerations for HPC and Al Systems

* Memory

e Efficiently utilizing compute
- Note: not more compute

e Communication



The Memory Wall

 Coined in 1995

William A Wulf and Sally A Mckee
 ACM SIGARCH computer architecture news, 1995
Observed that processors are getting faster faster than memory is getting faster

* “each is improving exponentially, but the exponent for microprocessors is substantially larger
than that for DRAMs. The difference between diverging exponentials also grows exponentially”

- DDR
 DDR2-200 1.6 GB/s released 1999 available in 2000
 DDR5 32-64 GBs released 2020 available in 2021

- HBM

« HBM 128 GB/s adopted and available 2013 used 2015
« HBM3 819 GB/s January 2022



The Memory and Communication Wall is getting Higher

Scaling of Peak hardware FLOPS, and Memory/interconnect Bandwidth Al and Memo
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* Modeling and simulation, and some Al apps, are memory bandwidth limited

 Al, and some mod/sim, applications are communication bandwidth limited
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https://daydaynews.cc/en/science/the-biggest-obstacle-to-ai-training-is-not-computing-power.html

Many Applications are Memory Bound

* The increasing divergence
between compute and memory
has led to an increasing number of
applications that are memory
bound
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* The best component to improve
modeling and simulation
applications’ performance is
memory bandwidth
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HPC Benchmarking: Scaling Right and Looking Beyond the Average,
Milan Radulovic et. al., International Conference on Parallel and
Distributed Computing, 2018
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Impact of Memory Performance

Execution time stack for SGD Execution time stack for Lulesh
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Stochastic Gradient Descent used in Machine Hydrodynamics code used in Classical HPC

Learning Algorithms

Why are we spending so many cycles communicating data?

IEEE AICCSA 19: CONCORD: Improving COmmuNication using COnsumeR-Count
Detection Farah Fargo, Shobha Vissapragada, Samantika Sury
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Addressing the Memory Wall

* Put compute close to memory

- 2.5D (Processing near memory)
e Current technology
 HBM co-packaged with compute
- PIM (Processing in Memory)
* Closest possible to memory
e Current constraints limit functionality
- 3D
* Compute closer to memory thanin 2.5D
* Reduces power consumption
* More efficient packaging than in 2.5D
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2.5D Opportunities and Challenges

* Significant improvement over DDR
- Bandwidth is higher
- Latency on par

e Substrate and connections can Substrate
be expensive

* Requires off die connection from
logic to HBM

- Off-die signals require more power

- Takes die area to connect the wires
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PIM Opportunities and Challenges

* Most energy efficient compute
- ALUs on same die as memory cells
- Data movement is minimal

* The type of operations are constrained
- ALUs reduce memory are or increase die area

* The operations are synchronous
- If conforming to JEDEC standard

BESS | HBM-PIM encbled Al engine,
garl | PCU(Programmalble Computing Unit)
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3D

* Improves power efficiency
- Data moves less

* Reduces latency
- Data travels less distance

* Allows general purpose logic

* Key decisions
- What compute
* Keep the programming model productive

- How much compute
* Provides opportunity for high B/F ratio

Closer coupling of compute with memory

Memary Logic

S . B . B . R .

e.g. 3D systolic ML accelerators in IEEE Journal on
Exploratory Solid-State Computational Devices and
Circuits — June 2021

16



Productively Utilizing Compute - Tight Coupling

* Accelerators are more challenging to use than general purpose cores

* Accelerators have higher efficiency than general purpose cores
- Performance/power
- Performance/cost

* A tightly coupled architecture allows more productive use of accelerators
-- Bandwidth
- Latency
- Coherency
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GPUs and Today’s Al have Co-Evolved

* As Al progressed GPUs included features useful to them
- Volta (2017) introduced tensor cores a 4x4 matric multiple and accumulate

- Turing (2018) introduced integer tensor cores
- Support of BF16

* Considerations to further optimize for stability and convergence

* As GPUs progressed Al applications were modified to leverage new features

- On early GPUs there was long latency, low bandwidth, disparate memory regions
» Codes (especially inference) written to be [off]loaded once to GPU

 We are done —right ?
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GPUs and Today’s Al Have Co-Evolved

* As Al progressed GPUs included features useful to them
- Volta (2017) introduced tensor cores a 4x4 matric multiple and accumulate

- Turing (2018) introduced integer tensor cores
- Support of BF16

* Considerations to further optimize for stability and convergence

* As GPUs progressed Al applications were modified to leverage new features

- On early GPUs there was long latency, low bandwidth, disparate memory regions
» Codes (especially inference) written to be [off]loaded once to GPU

« GPUs and HPC have not Co-Evolved as closely as GPUs and Al

- Many key HPC codes were written before GPGPUs
- Large Al codes are becoming more HPC like
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HPC Leveraging Accelerators Still Requires Work

* Portions of HPC applications need or prefer serial cores

- Many HPC applications remain bulk synchronous
* Percentage of parallel code may be high
* Interrupted by code that can not or would be better not run on accelerator

- Brachy code between loops
- MPI runtime and communication

* Running higher percentage of code on accelerator improves performance
- Higher percentage of off-loadable code implies finer-grained parallelism

X axis: percentage of code off loaded to accelerator

factor accelerator faster than CPU
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HPC Leveraging Accelerators Still Requires Work

* Portions of HPC applications need or prefer serial cores

- Many HPC applications remain bulk synchronous

* Percentage of parallel code may be high

* Interrupted by code that can not or would be better not run on accelerator
- Brachy code between loops

- MPI runtime and communication

* Running higher percentage of code on accelerator improves performance

- Higher percentage of off-loadable code implies finer-grained parallelism
e There is a cost to running on accelerator due to
* Bandwidth for accelerator to access data
* Latency to launch first line of code
* Hardware and software components
* There is a development effort to run code on accelerator
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The Memory and Communication Wall is getting Higher

Scaling of Peak hardware FLOPS, and Memory/interconnect Bandwidth Al and Memo
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* Modeling and simulation, and some Al apps, are memory bandwidth limited

 Al, and some mod/sim, applications are communication bandwidth limited
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https://daydaynews.cc/en/science/the-biggest-obstacle-to-ai-training-is-not-computing-power.html

Addressing the Communication Wall

* Closer coupling of compute with memory and communication
- Cost-efficient performance
- Power sharing

3D packaging =2 higher communication performance
- High point-to-point and all-to-all bandwidth

* Large supernodes with productive programming model
- Valuable to Al models for large reductions and large data exchanges, parallel FFT
- Utilize a productive programming model
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Supernode Desired Properties

* Much larger set of nodes with SMP-like
behavior

- Capabilities that would be advantageous: low
latency, high bandwidth, atomics, globally
accessible memory between nodes

* Programming model to allow developers to
transparently or explicitly leverage above
capabilities

* Semi-custom fabric to enhance power
properties

* A shared memory model for productive
prorgamming

SAMSUNG SAIT

semi-custom

supernode
fabric
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Performance

Benefits of the Supernode for Strong Scaling

Q

System Size

Modeled data
for supernode

Data from
existing machine
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System Overview

* Key innovations to advance HPC and Al

- Memory Coupled Compute

- Productive and tight-coupling of mainstream cores with accelerators
- Supernodes (large and high-performing globally accessible memory )
- System-level energy-efficiency
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Performance

Benefits for a Classical HPC and an Al Training Application
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Standard Productive Software Stack

Application

Framework
Library

Profiler
Debugger

Parallel
Programming

Programming
Language

Management

File System
Operating System

Hardware
SAMSUNG SAIT
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Innovating the Next Discontinuity

* The time is right to innovate the next discontinuity
- Vision: In the future memory coupled compute will be ubiquitous

* Tightly coupling memory, compute, and communication will allow
future optimizations

* Focusing on exploring technology for Al and HPC systems
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