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A Grand Challenge: Extracting meaningful insights
from complex data streams

* Simulation or scientific instruments produce
complex data at massive scale

* Storage of such data for offline analysis is
impractical

Physical constraints of the file system pose a
massive challenge

Data reduction will simply NOT suffice

A complete view of full datais NEVER available

Need solutions for online analysis of data
generated at high rate and volume - to extract
meaningful information 4




Climate & Weather Modeling

* Earth System Models (ESMs) datasetis multi-
dimensional, diverse, high-resolution including
structured and unstructured.

* Models can generate TBs of data, with long-term

simulations spanning centuries producing PBs of data.

* Destination Earth project — Digital Twin

« ECMWEF, ICON, MPAS-A, MPAS-O

CERN'’s Large Hadron Collider
(LHC)
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e CERN'’s Large Hadron Collider (LHC) detectors

generate over 1 billion collisions per second, with only
a fraction of them being recorded and analyzed due to
the sheer volume of data. This still results in TBs of
data per day.

* Discovery of the Higgs boson, the LHC produced

around 30 PB of data per year from collisions



Plasma Physics — governed by the physics of charged
particles

Diverse data properties

Microscopic particle interactions
to macroscopic magnetic field

<4
——=] Every simulation tracks millions

— to billions of particle

N
1— ili+i Credit: Felix Meyer (former HZDR, now NVIDIA)
fg Plasma Instabilities Real-Time Vector Field Visualization test using
HZDR Hemera Cluster with 4 NVIDIA V100.
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Plasma Instabilities — Implications

‘ Geomagnetic | Magnetic
Storms and reconnection

quantities of cosmic rays

radiation

| Sudden violent reaction in Solar flares and
fusion research enormous



What do we want to learn?

* Complete reconstruction of phase space
from observations to get a detailed view of
the growth and dynamics of instabilities

* Automatic detection of correlations
between plasma dynamics and emitted
radiation spectrum

* Otherwise this requires extensive post-
processing and analysis spanning years

* Extracting meaningful info out of complex
heterogeneous data being generated from

. . ) Credit: Rene Widera, HZDR
source or simulation at an exponentlal rate Real-Time Vector Field Visualization test using HZDR Hemera

Cluster with 4 NVIDIA V100.
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The Plasma-In-Cell on GPU (PIConGPU)team

S. Chandrasekaran %3, A. Debus!, T. Kluge!, R. Wideral, K. Steiniger!, M. Garten?*, M. Werner, J.Kelling!, R.
Pausch!, B. HernandeZz’ , F. Meyer’, V. Gutta3, F. Mora3, F. Poschel2, ]. Young?>, B. Worpitz, A. Huebl, D

Rogers®, G. Juckeland', M.Bussmann®2

RIDGE

National Laboratory

HELMHOLTZ ZENT
DRESDEN AOSSENDORF

RZOR \wmﬂum (‘ CASUS %OAK

I Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany

2 CASUS, Center for Advanced Systems Understanding, Goerlitz, Germany

3 University of Delaware, Newark, Delaware, USA PIConGPU is funded by the Plasma-

4 Lawrence Berkeley National Laboratories, Berkeley, CA, USA PEPSC EuroHPC Center of Excellence by
5 Georgia Institute of Technology, Atlanta, GA, USA the European Union through Grant

6 Oak Ridge National Laboratory, Knoxville, TN, USA Agreement No. 101093261.

"NVIDIA

PLASMA
PEPSC

Thank you very much HPE Cray/AMD Center of Excellence (COE) This work was partly funded by the Center for Advanced Systems
for your tremendous hardware/software support! Understanding (CASUS) which is financed by the German Federal Ministry of

Education and Research (BMBF) and by the Saxon Ministry for Science, Art,
and Tourism (SMWK) with tax funds on the basis of the budget approved by
the Saxon State Parliament.

We would like to acknowledge the Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) for funding this project by providing computing time
through the John von Neumann Institute for Computing (NIC) ornythe GCS
Supercomputer JUWELS at Jiilich Supercomputing Centre (JSC).

This research partially used resources of the Oak Ridge Leadership
Computing Facility (OLCF) at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department
of Energy under Contract No. DE-AC05-000R22725.



Particle In Cell on GPU (PIConGPU) Laser
WakeField Acceleration (LWFA

Acceleration of charged particles within plasmas

ACK: Vincent Gerber, HZDR, Germany
Using In-Situ viz library for Animation of Accelerated Computations (ISAAC)
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PIConGPU applicability

Compact table top X-Ray sources of high brightness, e.g.

Free-Electron Lasers to create snapshots of ultrafast
processes in material science

Extend plasma-based electron accelerators from multi-
GeV towards TeV electron energies

Applications in radiation therapy of cancer.

Fundamental studies of warm-dense matter and high
energy density physics

11



ORNL’s Center for Accelerated Application Readiness (CAAR)

- Jo stress test Frontier’s hardware & software stack

~>=4X % 01K R
— ®Evercy f‘“ﬂ‘y JINCTTEN
[ 63 =R -4 —_—-h
Vs Summit ¢ -
AMDZ1
at ORNL
OLCF Frontier‘'s AMD EPYC
ACK: Felix Meyer (NVIDIA, former HZDR), Richard CPU + AMD Radeon Instinct
Pausch, HZDR MI250x GPU
Still image from an uncut LWFA simulation video
using OLCF Summit and 48 NVIDIAV100s using
ISAAC 1.5 (in-situ library) 12

( 909 x particle updates + 10% x cell updates)
second

FOM =

\_




PIConGPU targets....

* Since ORNL’s TITAN supercomputer NVIDIA’s K20s GPUs
* ORNL’s Summit supercomputer NVIDIA’s V100 GPUs

* LBNL’s Perlmutter NVIDIA A100 GPUs

e JSC’s JEWELS Booster NVIDIA A100 GPUs

* NVIDIA’s H100 GPUs

* Julich’s H200 GPUs

* Frontier’s AMD MI250x GPUs

* Ampere computing Altra Q80 6—bit CPUs (based on Arm
Neoverse N1)

13



ORNL’s Frontier
supercomputer

Compute Node 1 64-core AMD “Optimized 3rd Gen EPYC”
CPU 4 AMD Instinct MI250X GPUs = 606,208 cores

GPU Architecture AMD Instinct MI250X GPUs, each feature
2 Graphics Compute Dies (GCDs) for a total of 8 GCDs per B ?

PCI SW

node = 37,888 Instinct GPUs B e ] oo o ] oo | vous o | i ] o ] 7oor) |

System Interconnect 4-port HPE Slingshot 200 Gbps (25 [TE

GB/s) NICs providing a node-injection bandwidth of 800 e e e e e e e e Y/
Gbps (100 GB/s) - ST T ) e BT B B B K
Storage 700 PB HDD+11 PB Flash Performance Tier, 9.4 B R ———— M N

W

TB/s and 10 PB Metadata Flash Lustre o7~ oo o un o

512 GB (DDR4)
(205 GB/s)

System Size ~9400nodes R = =0 | 520 | .12 | 09,120 | oo 20 | esos29 | sns 20 | e |
o . s |Nfinity Fabric GPU-GPU (50+50 GB/s) s PCle Gend ESM (50450 GB/s) S —— T —
Ra n kl n g N O 0 1 I n t h e TO p 5 O O a S Of J u n e 2 O 2 4 EM Infinity Fabric CPU-GPU (36+36 GB/s) PCle Gend (8+8 GB/s)
- - Ethernet (25+25 GB/s)

KEY




PIConGPU Exascale challenges

ACK: Benjamin Hernandez, ORNL

LWFA Simulation. Using Summit’s 8 nodes
(48 V100 GPUs) with ~2 billion particles
using ISAAC v1.5.1 running on OLCF’s
cloud environment (SLATE)

Portability: Run code on different compute
architectures (single-source, run everywhere)

Performance: Cannot lose performance while
maintaining portability

Scalability: Code profiling & scaling tests to ensure
science cases scale to Frontier

Visualizations: Create and develop tools to
visualize PIConGPU on the new system

Exascale workflows: Extend I/O capabilities,
provide in-situ analysis, data reduction and
visualization workflows 19



al~aka

software stack

PiICon GPU

template< typename T_Acc

ALPAKA_FN_ACC void

operator () (
T_Acc const & acc,

//
) const
{

//

}

ware
ool Boost | g OpenMP5+

ential Fiber _ .
Blocks | Threads SYCL '~ZpenAcCC

Huebl, Axel, et al. (2018) ++
Software Stack updated by René Widera (2020)

al~aka

Kelling, J., Bastrakoy, S., Debus, A., Kluge, T., Leinhauser, M., Pausch, R., ... & Juckeland, G. (2022, May). Challenges porting a C++ template-
metaprogramming abstraction layer to directive-based offloading. In Accelerator Programming Using Directives: 8th International Workshop,

WACCPD 2021, Virtual Event, November 14, 2021, Proceedings .92-111). Cham: Springer International Publishing.



https://zenodo.org/record/1304272

FOM baseline run on OLCF Summit (2019) TWEAC case study

(Single Precision)

PIConGPU main loop
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Peak FOM: 16.3 TeraUpdates / s
Average FOM: 14.7 TeraUpdates / s

FOM in weighted updates per second [10"%/s]

0 100 200 300 400 500 600 700

Time [s]

Peak power: SMW
Sustained power: 5.8MW

( 90% x particle updates + 10% x cell updates)

N2 timesteps 1000
N2 NVIDIA V100 GPUs 27600 (4600 nodes)
N2 cells total 404 billion
N? cells per GPU 14.6 million
N? particles total 10.1 trillion
N?Q particles per GPU 365 million
N2 simulation data 324 TB
Particle Data 313.36 TB
Cell Data 14.52TB
Particles Processed 16.2 Trillion particles/

sec
Cells Processed 656 Billion cells/sec
GPU Kernel Calls 9 Million kernels/sec

FOM = second

.

PICon GED)|

E




Major Improvements to PIConGPU since Summit run
(2019)

e Algorithmic improvements

o Optimized laser functor [TWTSfast]

o New field background algorithm [SuperPusher]

o New laser algorithm [IncidentField]- 2 years' worth work
o Performance optimizations

o GPU-aware MPI

o Optimized particle assignment

o Enhance device utilization

No. of commits: Autumn 2019: cupla 136, Alpaka 1057, PIConGPU 1278, mallocMC 93
Red Queen's race - staying in the same place is falling behind

Leinhauser, M., Widera, R., Bastrakov, S., Debus, A., Bussmann, M. and Chandrasekaran, S., 2022. Metrics and design of an instruction roofline model18
for AMD GPUs. ACM Transactions on Parallel Computing, 9(1), pp.1-14.



19



_. Exascale FOM runs for TWEAC case study

L
N\ MET THE CAAR
/ , FOM TARGET
— 70.00 4.44 X
0 4.08 x
g 60.00 65.7
_cgc:_ 5 00 TUP/s
?U 40.00
g 30.00 126 X
s 20.00 1.00 x
@) | 14.7 18.6
L o TUP/s TUP/s
0.00
Summit’'19 4600 nodes baseline Summit’22 projected

® Frontier'22 8704 nodes Frontier'’22 9216 nodes

Note, these
results use
single precision.

8.5x for double
precision
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FOM run on Frontier (2023) TWEAC case study

(Single Precision)
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time / min

Peak FOM: 78.3 TeraUpdates / s
Average FOM: 65.7 TeraUpdates / s

( 90% x particle updates + 10% x cell updates)
second

PIConGPU on 98% of Frontier
Peak Power: 23 MW
Average Power: 21.5 MW

FOM =

-

N? timesteps

1000

Ne AMD GCDs 73,728 (9216 nodes)
N9 cells total 1.1 Trillion
N2 cells per GCD 14.6 Million
N? particles total 27 trillion
N?Q particles per -
GCD 365 million
Particle Data 760.7 1B 41% more
Cell Data 35.3TB 41% more
Particles 72 Trillion/sec| 22.5% more
Processed

Cells 2.6 Trillion/sec 25% more
Processed

GPU Kernel 24 Million 37% more
Calls kernels/sec

US|



Weak Scaling FOM case on Frontier

NQ Iterations: 1000

10°

Runtime: ~10 mins
~ (.37 secs per iteration

|_1

o
£
i

FOM Science case

=

-
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Scaling:

- 6 nodes~> 9,216 nodes
- 48 GCDs > 73,728 GCDs
- 24 GPUs - 36,864 GPUs e

o 96-98% GPU utilization 101 102 103 104 10°
Number of GPUs (Summit), GCDs (Frontier)

FOM / GUpd/sec
=
<

=

o
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There is more to do....

e With Frontier we can ONLY perform a few long-running
simulations where we will hopefully observe
acceleration of electrons to highest 100GeV scale
energies, BUT the parameter space of laser electron
acceleration is HUGE; we are still just able to catch a
TINY bit of it.

e Needtoexplore LARGER parameterrange, need a
sophisticated WORKFLOW to further advance
science

. . . ACK: Vincent Gerber, HZDR, Germany
e Needto close gap between simulation scenarios oOn  ysing In-Situ viz library for Animation of

supercomputers and the experimental setup in the Accelerated Computations (ISAAC)
labs

23



PIConGPU data volume

* Forward calculation incurs a heavy
computational cost prohibitively
expensive for a wide range of simulation
parameters.

* Simulations of plasma behavior, involve
solving complex nonlinear equations for
trillions of particles creating TBs of data

* Due to the scale of the data, we cannot
save all the raw data to disk

* We need a different solution!



What do we want to learn?

* Complete reconstruction of phase
space from observations to get a
detailed view of the growth and
dynamics of instabilities

* Automatic detection of correlations
between plasma dynamics and
emitted radiation spectrum

* Otherwise this requires extensive post-
processing and analysis spanning years

25



Extracting knowledge from large scale simulations
Is a challenge!!

_> Particle data _}

streaming

Learning Outcomes

Jeffrey Kelling.....Michael Bussmann, Sunita Chandrasekaran, “The Artificial Scientist - Leveraging In-transit Machine
Learning for Plasma Simulations” Accepted to 39th IEEE International Parallel & Distributed Processing Symposium
(IPDPS) 2025, Best Paper Nomination




Case Study: Kelvin-Helmholtz instability (KHI) in
PIConGPU

* Well known shear surface
Instability observed in
fluids and plasma

* When 2 layers exhibit
different velocity/density

* Viz using ISAAC

Richard Pausch, HZDR, Germany; Uses 4 V100 GPUs

In plasmas, the KHI is driven by a self-amplifying cycle of small density or velocity fluctuations that lead to a growing

magnetic field at the shear surface, which further amplifies the initial fluctuations as depicted 27



openPMD and ADIOS2

* Particle datais streamed from the simulation
(PIConGPU) using a custom implementation of
openPMD thus avoiding file system limitations

 Data standard for particle mesh data

* ADIOS2 allows implementations of TCP (non-
scalable fallback), libfabric, ucx and the
MPI_Open_port() APl of MPI

e Combination of openPMD-api and SST data
engine of ADIOS2 allows direct in-memory
transport

Poeschel, Franz, et al. "Transitioning from file-based HPC workflows to streaming data pipelines with openPMD and ADIOS2." Smoky Mountains
Computational Sciences and Engineering Conference. Cham: Springer International Publishing, 2021.

Huebl, A., Lehe, R., Vay, J. L., Grote, D. P., Sbalzarini, I., Kuschel, S., ... & Bussmann, M. (2015). openPMD: A meta data standard for particle and
mesh based data. URL https://doi. org/10.5281/zenodo, 591699.




Challenges - System Constraints

* 20to 30 TB/s parallel throughput of particle data @ 5.86GB/node * no. of
nodes

* BUT only 10 TB/s bandwidth of Orion file system on Frontier

* PIConGPU scaling to just 25% of Frontier system would produce 1 PByte of
data every time step
* 1000 time steps with each lasting 0.1sto 1s

* We often see 1 to 10 Petabytes/s of particle data requiring disk volumes on the order
of 10 Exabyte

* Implication: Entire file system can be exhausted in 100 to 1000 seconds



Three in-transit workflow approaches on Frontier

Distributed Distributed
Producer Consumer
Dooo work distrib. balances BW
O0OOoao
OoOoo
 DoEo )
3- 3- O o O
o o O ]
) ) ) 3. a O O O
Streaming without going through storage unlocks more 0 O O oo
bandwidth . .
intra node inter node

Distributed producer and consumer, system topology
wb reduction |—> - presents communication paths with vastly different
O(PB/s) ~ 30TB/s bandwidths which must be reconciled with the

loosely-coupled application’s communication

Reducing simulation data close to the producer lowers requirements.
bandwidth requirements

30



Data streaming using MPI data plane and libfabric using

9126 Frontier nodes

The amount of particle data produced by
PIConGPU KHI is 5.86 GiB per compute node and
time step.

Parallel throughput (w/o using file system) for
4096 nodes
* Libfabric per-node achieved per-node
throughput of 3.5 ~ 4.7 GB/s
* MPIl data plane yields a per-node throughput
from 2.6 ~ 3.7 GB/s

perceived parallel throughput [TiBs ™!

Maximum parallel throughput of 20 - 30 TB/s
which compares outstandingly against the 10
TB/s bandwidth of the parallel Orion filesystem

The libfabric’s lower-level control can bring
performance improvements over the more
managed MPIl implementation

I
o

[S™]
[am]

p—
o

*

K
L !_I_il_

| B s

bandwidth
limit

| | | |
4096* 4096 6912 8192 9126

number of nodes
libfabric backend

30

10

PFS bandwidth
limit

| | | |
4096 7168 8192 9126

number of nodes
MPI backend
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In-transit continual learning

Learn Con‘tinua“y

snapsl\ots of )
evolution of Plas;na

and radiation data

bep[oy Continua“y

Model is continuously trained online from subsequent snapshots of the evolution of plasma and

radiation data without storing every data point to disk
Continuous learning circumvents lack of adequate disk capacity and bandwidth by enabling

data to reside and distribute in-memory via network interconnects. 52



ML model architecture

particles D

Finding a function that can take B Upsample the data back to a
an output and reconstruct the larger size, increased resolution,
input it came from 1 % 1 conv reduced dimension

-

max pool
= MLP MLP :
.% I I deconv 3D 3
% \‘ mean ] [std dev. cr: I §
. \ / MLP .

Represents the underlying characteristics
of the original particle butin a more
abstract, lower-dimensional form




Data parallelism and scaling on Frontier

AG A G‘G a dﬂ a da a
* ML modelfitsinto 1 GCD
* Each copy of the model receives @_. @__,’

different chunks of data to train on

* Asynchronously train the model with
that data

* Scaling depends on the optimization of
all-to-all communication in PyTorch
DDP

* using N/JRCCL backend - hits a wall after
100 Frontier nodes = 400 AMD GPUs

* Need to explore libfrabic backend for M
N/RCCL or PyTorch DDP’s MPI backend [ all reduce ]

Pytorch DDP




Weak scaling and observations

Increasing time spentin PyTorch DDP for larger runs

Low Efficiency - Inevitable all-to-all communication between
PyTorch ranks taking place to average gradients during each

100f

backward pass —deficit of 30% _
= got

Low Efficiency - Lack of availability of PyTorch distributed primitive &
for matrix dot product to evaluate INN é 00r
In-transit training at very large batch size |

* Hyperparameter needs to happen at scale; doesn’t transfer well

from small scale experiments .
Loss functions to compare point cloud-CD vs EMD .

Comprehensive studies between batch sizes, block learning rate
and weights need to be studied at scale with streamed simulation

—
f—

—
C———

8 24 48 96
number of nodes

In-transit training from 8 to 96 nodes

(32 t0 384 GCDs)
Reaches around 35% at 96 nodes

35
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Take aways 55
®a10
? 1077 - : : :
L. 1071 100_ _ 10! 102
* The model clearly learned to partition the latent frequency in units of plasma frequency
. . . . . 107 truth: PI P
space into regions for different flow directions and 0z gr°“”K‘:l s ConGPU o
2 1014 ‘ vortex
1 1 2 & I approaching detector
vortex regions, which both the encoder and the 58 0. L) = receing o seectr
inversion network learned to map to. o 5T ML prediction (c)
25 161 =g
© C
* Achieved partial reconstruction of the plasma S8 10| 4 :
fotri ; P At : : L 03 02  -01 0.0 +0.1 +0.2 +0.3
distribution, the ML prediction still clearly identifies N, P SR - S,

the instability regions

* Apromising first result towards large scale in-transit
learning for a non-steady state processes

* Ran problem at scale and discovered
challenges/opportunities along the way

Automated learning of physical relationships from in-transit data of large-scale simulations and the
identification of regions of instability is already a major step forward




Extracting knowledge from large scale plasma
simulations

ADlyS () pyTorch 'Machine Learning |
Particle data CATAN
w streaming =~ —)
PMD N :

MHaka

ISAAC
PICon@iDm'




So much more to do....

* Build surrogate models of simulations of different configurations —
classically these experiments would be very expensive

* Collect many time steps
* Intelligently reduce data
* Learningin-transit valuable information from more than just one simulation

* More sophisticated decoder to generate higher-fidelity depictions of
particle configurations

* Encoders incorporating point transformer blocks and a deeper network
around the bottleneck to better extract latent information from point-
features

38



Need for WORKFLOWSs to tackle complex, data-intensive real-
world applications!

P
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Al Center of

Al Center of Excellence
Seed Funding Program

The center’s seed funding program aimed to provide support to various Al projects at UD
through funds, Research Software Engineer support, or undergraduate researcher support.

Excellence (2022) leading to Al

Institute (2025)

2023 - 80 Participants, 11 case studies
Udel, Kendal Corp, FMC, Chemours, Community Health
Options

2024 - 74 Participants, 11 case studies from
ATOM Team and

IMPACT: ) Summer
proposals recieven: | [ seed runpep prosects: || TOTAL AMounT AWardeD | externat Funoing Awarben To UDel, Delaware State, Bowie State, Penn State, Hackathons
30 12 $F;01M7Mg§¢2 SEED FUNDED PrOJECTS: Northeastern, Berkeley, ATOM, Frederick Lab
) $6.1 Million sV 5286 i g R AR P
By S2LS Under reyyey, k iy P
INSTITUTE FOP
DOD eNEINEEring ceneraL
ROI =2 50X payyy Ven watr UNIVErsITY
RESCArcH
NASA  AWS  rounpamion NSF

Al Research Areas of Interest

® "9
A" Financial Equity &
i
AICoE Faculty @

Complementing
Human Impact

Colleges
affiliated

Affiliated faculty
members

P8, Medicine, Science and
;@E Engineering

Artificial Intelligence Graduate Certificate
@ Credits of grad-level courses

Computer
Vision
Why Learn AI?
This rapidly evolving field is integrated into so many aspect of daily life.
Skills in building and training Al systems are highly sought-after across
industries.

< This certificate can open the door to a wide range of career
opportunities and provide a competitive edge to your skillset.

vamm Build Software

< f') Infrastructure

Sectors looking for Al experts
Natural

Language

’ + Processing
. (E’ Finance g Healthcare
Different
ceprmers (R % I




Democratize access to research software engineering
(RSE) by creating an educational pipeline for RSE,
building a team of RSE professional and trainees, and
engaging them in the advancement of computational,
data-intensive, and Al-enabled science projects in the
Mid-Atlantic region and beyond.

Establish a graduate level course and
RSE pilot certificate

Identify and create a sustainable and
scalable pipeline of RSEs to
accelerate and enable domain
sciences, especially in the SBE and
CSldomain areas

Connect RSEs from other initiatives
such as NSF ACESS, SCIPE and US-
RSE to foster a broader network

Project Goals

Explore how data-driven ML/AI
methods can be applied for
problems in domain science

What is an RSE?

Research Software Engineer (RSE)
Someone who combines professional software engineering
expertise with an intimate understanding of research.
Who would be considered an RSE?
* Researchers who spend a lot of time programming
» Software engineers who write code to solve research
problems

* Someone who feels they are in between a researcherand a

software engineer!

Current Projects

Coastal Science
Urban and Coastal Flood Modeling
* ML to create classifications of land cover from aerial
imagery and LiDAR to assist with flood modeling
Sub-Model for Settling Velocities of Cohesive Sediment
* ML for a surrogate model to predict time series of floc
size distribution subject to environmental forces

Social Science
Multi-Model Topic Models of Foreign Policy Speech Texts
and Photographs
* Large scale collection and storage of text-as-data and
image-as-data, and subsequent application and scaling
of transformer-based models for text- and multi-model
content.

D RSLE

Democratizing Access to
Research Software
Engineering

Sunita Chandrasekaran Rudi Eigenmann
Associate Professor Professor
Computer & Info Sciences Electrical & Computer
Engineering

UD Leadership

Benjamin Bagozzi John Huffman

Professor Director
Political Science & Research Computing
Internat. Relations

Tian-Jian Hsu
Associate Professor
Computer & Info
Science

This materialis based upon work

supported by the National Science
Foundation under grant No. 241814
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