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Motivation

= Failuresinleadership class accelerated HPC and Al systems have
become the norm rather than the exception

= This was anticipated a decade ago in the HPC community...

= Assystems continue to scale in size, the frequency of failures on the
entire system is expected to increase

= Tightly coupled parallel workloads (e.g., HPC modeling/simulation and
Al training/fine-tuning) are highly sensitive to failures

= Asingle “/lemon node” can ruin the run

= To ensure efficient deployment and operation, automated failure
management is essential
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Aurora System Architecture

COMPUTESYSTEM
166 compute cabinets
10,624 compute nodes

COMPUTE CABINET Blades
64 compute blades

SWITCHBLADE Rectifier Chassis
1Slingshot switch
DragonFly topology Compute
Chassis
‘ \ Compute Blades i NON-COMPUTE
DAOS Storage nodes
\ Service nodes
AURORASYSTEM
& (i 10,624 compute nodes
g(c)gllSSUTE BLADE 63,744 GPUs
6GPUs e el 000 21,248 CPUs
8NICs [ 84,992 NICs
PDUs 84,992 IVOCs (PSU)
5,312 Switches
] 169,984 DDR DIMMs
MCOC_’"”Q 594,944 HBM Stacks
anifolds
Ponte Vecchio
2-Tile Configuration / . .
8x16GB HBM stacks cPU Over ~345,000 replaceable/repairable parts in the system!

SPR+HBM SoC

52 Xeon cores
4x16GB HBM stacks
8x DDR5 channels
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Hardware Failures inLarge Scale Systems

(D) Failures due to design bugs which fail on every instance of component <X> under specific conditions (e.g.,, MERT accumulator overflow bug in PVC)

(D) Failures due to intermittent faults

» Aged/degraded components, systematic issues due to marginalities (could also be deficiencies in design, validation, etc.), manufacturing defects

(FP) Software, networking, or correlated faults and other errors that could create failures that look like hardware component issues

Acknowledgments: Lance Cheney and Gustavo Espinosa @ Intel
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Key Observations and Problem Statement

= How to distinguish intermittent and transient failures?

* How to handle first strikes?

* Replacing every component on first strikes is impractical

= Probability of an intermittent error occurring on the same component twice is extremely small

Indication of defects?

= Need tounderstand reoccurrence rates and the statistical properties of durations between strikes

These are specific to failure modes

= Failure history needs to be captured in context

Firmware/software versions, external conditions have impacts

= Need for automated failure categorization

= Automated failure servicing/management?

Multicore World XII @ Christchurch, New Zealand, Feb 17-212025

intel.

7



Agenda

StabilityDB Architectural Overview
Failure Strike Policy

Failure Management Automation
Results

Conclusion

Multicore World XII @ Christchurch, New Zealand, Feb 17-212025

intel.

8



StabilityDB Infrastructure Architectural Overview

Bundled failure log
capturing Automatedtriage

o

T

=)

Relational DB

Inventory and node metadata

« MTBF/MTBAlanalysis

* Failure stats/breakdowns with workload association

« Failure stats with component/FW versioning association
« Inventory/partreplacement tracking and projections

* Automated failure mitigation

/

Failure ratesand indicators

Real time system view

StabilityDB is an integrated timeseries based meta-database on compute nodes
in the system, history of:

* Failures

* Inventory/component serials

» Versioning (firmware/software/etc.)

* Workloads

* Resource manager state, e.g., queue changes, etc.

Primary insight was “essential data in context”, with goals of:
* Easyanalysis
+ Datadriven guidance for bring-up/debug

Multicore World XII @ Christchurch, New Zealand, Feb 17-212025 intel®




Aurora: Interaction with Cluster Management/Telemetry

Aurora Monitoring

Argonne Management Node(s)

HPCM-internal
Storage

ALCF
Storage node(s)

Plugs into standard telemetry/event data streams:
= E.g,Kafkaand RabbitMQ

ELK DB
(ElasticSearch)

— N

Timescale DB

ALCF-Managed DB
(PostgreSQL)

— -

ot

Mzt o \

N R

StabilityDB meta-database

s

&

Interacts with cluster management software components (e.g.,, HPE HPCM node management)

Interacts with batch scheduler (e.g., PBS)

Leader Node(s)

- Conserver

LDMS Data 18
Aggregator

HPCM Sensor ' 903
Aggregator

. e .
7/
/ \

Compute Node(s)
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StabilityDB Backend Functional Components

SEe T — =
StabilityDB Queue/Job - ml MM

Tracker
meta-database

««««« :I ./ . 7 IA

CMMBlade/BKC/ .
Firmware / Job qultor
Component Serials Service
Tracker
Log capture “\Trigger on hang

,—"”/‘ \‘
Start_ .-

Job Hang

“End

Capture

Start

Stack traces, networking logs, Linux dmesg, etc.

Blades

\
\

/
/
/
Y
ally
/
’
/
/

Yy YyvVyYyYVYYY Y

Heartbeat
Bl driven Crash
Log Service

Capture on crash

~

Update failure

signature Failure A""‘Triggeron collection

Categorizer

Time
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Distribution of Elapsed Time between 15t and 2" Strikes

Distribution of elapsed time between 1st and 2nd strikes (after 2024-07-01)
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Fine-Grained Multi-Strike Policies

Updated ts Sig Live Criteria Strike_1 Strike 2 Strike 3 Strike 4 Strike_5
v v

2024-12-08 13:02:41 1 single chip HOST_COLD_RESET,REDEPLOY_STABILITYDB... RMA_BTK CONTACT_INTEL_REP CONTACT_INTEL_REP CONTACT_INTEL_REP

2024-12-08 13:02:42 1 single chip HOST_COLD_RESET,REDEPLOY_STABILITYDB... RMA_BTK CONTACT_INTEL_REP CONTACT_INTEL_REP CONTACT_INTEL_REP

2024-12-08 13:02:42 1 single source DSS_SWAP,MONITOR DSS_SWAP,MONITOR CONTACT_INTEL_REP CONTACT_INTEL_REP CONTACT_INTEL_REP

2024-12-08 13:02:42 1 single chip HOST_COLD_RESET,REDEPLOY_STABILITYDB... REDEPLOY_STABILITYDB,MONITOR REDEPLOY_STABILITYDB,MONITOR REDEPLOY_STABILITYDB,MONITOR REDEPLOY_STABILITYDB,MONITOR
2024-12-08 13:02:42 0 single chip HOST_COLD_RESET,REDEPLOY_STABILITYDB... GTIFR RMA_BTK CONTACT_INTEL_REP CONTACT_INTEL_REP

2024-12-08 13:02:42 1 single chip HOST_COLD_RESET,REDEPLOY_STABILITYDB... REDEPLOY_STABILITYDB,MONITOR REDEPLOY_STABILITYDB,MONITOR REDEPLOY_STABILITYDB,MONITOR REDEPLOY_STABILITYDB,MONITOR
2024-12-08 13:02:42 1 single chip CONTACT_INTEL_REP CONTACT_INTEL_REP CONTACT_INTEL_REP CONTACT_INTEL_REP CONTACT_INTEL_REP

2024-12-08 13:02:42 0 single source DSS_SWAP,MONITOR DSS_SWAP,MONITOR CONTACT_INTEL_REP CONTACT_INTEL_REP CONTACT_INTEL_REP

2024-12-08 13:02:42 1 single source DSS_SWAP,MONITOR DSS_SWAP,MONITOR CONTACT_INTEL_REP CONTACT_INTEL_REP CONTACT_INTEL_REP

2024-12:08 13:00:4 il inglesourc DRSS SWAPMONITOR DRSS SWAP MONITOR CONTACT INTEL REP CONTACT INTEL REP SONTACT INTEL REP

2024-12-08 13:02:42 GPU_HBM-Issue_01 1 single source HBM_IFR PVC_COLD_RESET,MONITOR RMA_BTK CONTACT_INTEL_REP CONTACT_INTEL_REP CONTACT_INTEL_REP

2024-12-08 13:02:42 0 single chip HBM_IFR,PVC_COLD_RESET,MONITOR RMA_BTK CONTACT_INTEL_REP CONTACT_INTEL_REP CONTACT_INTEL_REP

2024-12-08 13:02:42

2024-12-08 13:02:42

single source

single source

HBM_IFR, MONITOR

HEM_IFR,PVC_COLD_RESET,MONITOR

CONTACT_INTEL_REP

RMA_BTK

CONTACT_INTEL_REP

CONTACT_INTEL_REP

CONTACT_INTEL_REP

CONTACT_INTEL_REP

CONTACT_INTEL_REP

CONTACT_INTEL_REP

= Per failure mode fine-grained description

= Policies must be based on statistical information, for that we need a meta-database tracking those metrics

= Defines failure management automation actions

Multicore World Xl @ Christchurch, New Zealand, Feb 17-212025
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Automated Failure Management Components

Supercomputer / Failure "
Data Center Tracking StabilityDB
R Meta-database

EEEEE
EEEEN /. -

v

Diagnosis

and IFR
tools

Maintenance
/ Smart sheets

Periodic
cleanup/
Mmaintenance

Failure triage and resource offlining Historical data analysis and strike policy Maintenance actions
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Automated Failure Management Results (AT-S)

Distribution of downtime for manual vs. automated blade disposition
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Availability and Utilization during AT-S

Availability and Utilization
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First and Second Strikes Month over Month

First and second strike counts per failure signature per month

70

60

50

40
35
30

25

CMM-Issue_01
0

DDR-Issue_01

GPU-Issue_01
7

GPU-Issue_05

140

120

100

80

60

40

20

70

60

50

40

30

60

50

40

30

20

50
7l

CPU-Issue 01 CPU-Issue 02

— 1Ist
=== 2nd

L D —=== 0.0

DDR-Issue_02 Fabric-Issue_01

40

30
— 1st
=== 2nd

10

GPU-Issue_02 GPU-Issue_04

GPU_HBM-Issue_01 GPU_HBM-Issue_02
30
25
20
15
10
_______ 4
TTmm—l2l 5
_____________ L
5] 5 5 g
=+ o =+ bel
g ] & g

Multicore World XII @ Christchurch, New Zealand, Feb 17-212025

System stabilizing via decreasing 1stand
2nd counts for most failure signatures

Constantrate of CEson DDR and HBM

intel.

19



Job Failure Breakdown during AT-S vs. Meta !

Overall Job Failure Breakdown (Flattened)

.
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Pcig

Stall/hang/walltime
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pett

Labels
mmm Performance
= GPU
= Stall/hang/walltime
— fabric
= GPU:SegFault
= PCle
mm= UserError
= GPU:HBM
we PowerSupply
== CPU
. FowerSeq
Waw AppError
=== job_Cleanup
— Rest

Thisequalstoan MTBAI=3.7H @ 16K GPUs

*The Llama3 herd of models

Liama Toam, A1 @ Meta'

A kit coteoter Tk can b o i the appenis of this pages.

Scaling this linearly to Aurora scale:

MTBAI=55min @ 64K GPUs

Veery similar overall failure profiles!

Component Category Interruption Count % of Interruptions
Faulty GPU GPU 148 30.1%
GPU HBM3 Memory GPU 72 17.2%
Software Bug Dependency 54 12.9%
Network Switch/Cable Network 35 8.4%
. Unplanned -
Host Maintenance . 32 7.6%
Maintenance
GPU SRAM Memory GPU 19 4.5%
GPU System Processor GPU 17 41%
NIC Host T L%
NCCL Watchdog Timeouts Unknown T 1.7%
Silent Data Corruption GPU G 1.4%
GPU Thermal Interface + Sensor GPU G 1.4%
S5D Host 3 0.7%
Power Supply Host 3 0.7%
Server Chassis Host 2 0.5%
10 Expansion Board Host. 2 0.5%
Dependency Dependency 2 0.5%
CPU Host 2 0.5%
System Memory Host 2 0.5%

Table 5 Root-cause categorization of unexpected interruptions during a 54-day period of Llama 3 4058 pre-training. About
78% of unexpected interruptions were attributed to confirmed or suspected hardware issues.
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Supercomputer/Data Center Digital Twins?

= “Digital twins provide living digital models of physical systems that enable data-driven analysis
and application of artificial intelligence to better manage the datacenter and drive efficiency for
sustainability.” [1]

= “Historically, data center management has been split into silos that each focus on one aspect.. as
aresult, ... different areas can miss the bigger picture. Digital twins help to centralize data from
across different areas of concern into a shared environment” [2]

To Human Operator

| Ul: Visualization, Dashboards, Human Interaction ‘

Core Functions Integrated Data Al Stack To
To Other
Workflow Predictiol Federated
Processes | what If-Anal \y DB Past Behavi Inf Twins
l ‘ Simulatior ||D|I|eg| |T ining Le: g‘ l
Data Collection ||DCD(de ‘ | DC Al Model ‘

‘ DC Model ‘

To IT and Facility
ter digital twin software architecture. DB: database.

10687340

FIGURE 5. Datacen
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Conclusions and Outlook

As large scale systems grow in size intermittent failures become more prevalent

Efficient operation requires automated failure management

Fine-grained multi-strike management policy

Key is data in context that enables real-time decision making

Outlook:
= Predictive (Al?) failure avoidance
= Continuous fleet scanning
= Standardized failure reporting across components?
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Thank you for your attention!
Questions?
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